[1] FRéMONT DP, MARION N, NOLAN SP. Carbenes: Synthesis, properties, and organometallic chemistry[J]. Coordination Chemistry Reviews, 2009, 253(7-8): 862-892.
[2] FISCHER D E O. Auf dem Weg zu Carben‐ und Carbin‐Komplexen Nobel‐Vortrag[J]. Angewandte Chemie, 1974, 86(16): 651-663.
[3] SCHROCK RR. Alkylidene complexes of niobium and tantalum[J]. Accounts of Chemical Research, 1979, 12(3): 98-104.
[4] DAVIES HM, HEDLEY SJ. Intermolecular reactions of electron-rich heterocycles with copper and rhodium carbenoids[J]. Chem Soc Rev, 2007, 36(7): 1109-1119.
[5] DAVIES HM, MANNING JR. Catalytic C-H functionalization by metal carbenoid and nitrenoid insertion[J]. Nature, 2008, 451(7177): 417-424.
[6] ZHOU JL, WANG LJ, XU H, et al. Highly Enantioselective Synthesis of Multifunctionalized Dihydrofurans by Copper-Catalyzed Asymmetric
[4 + 1] Cycloadditions of α-Benzylidene-β-ketoester with Diazo Compound[J]. ACS Catalysis, 2013, 3(4): 685-688.
[7] ALAMSETTI SK, SPANKA M, SCHNEIDER C. Synergistic Rhodium/Phosphoric Acid Catalysis for the Enantioselective Addition of Oxonium Ylides to ortho-Quinone Methides[J]. Angew Chem Int Ed Engl, 2016, 55(7): 2392-2396.
[8] HANSEN J, AUTSCHBACH J, DAVIES HM. Computational study on the selectivity of donor/acceptor-substituted rhodium carbenoids[J]. J Org Chem, 2009, 74(17): 6555-6563.
[9] YOSHINORI. YAMAMOTO NA. Selective reactions using allylic metals[J]. Chemical Reviews, 1993, 93(6): 2207-2293.
[10] TACKE F P, MüLLER B, THEIS B, et al. Sila-haloperidol, a silicon analogue of the dopamine (D2) receptor antagonist haloperidol: synthesis, pharmacological properties, and metabolic fate[J]. ChemMedChem, 2008, 3(1): 152-164.
[11] JOHANSSON L W, POPP F, TACKE R, et al. In vitro metabolism of haloperidol and sila-haloperidol: new metabolic pathways resulting from carbon/silicon exchange[J]. Drug Metabolism and Disposition, 2010, 38(1): 73-83.
[12] MOREIRA L, LIMA EJ. Bioisosterism: a useful strategy for molecular modification and drug design[J]. Current Medicinal Chemistry, 2005, 12(1): 23-49.
[13] ZHOU C, WANG X, QUAN XC, et al. Silicon-Containing Complex II Acaricides─Design, Synthesis, and Pharmacological Optimization[J]. Journal of Agricultural and Food Chemistry, 2022, 70(36): 11063-11074.
[14] WEI G, HUANG WM, WANG WJ, et al. Expanding the Chemical Space of Succinate Dehydrogenase Inhibitors via the Carbon-Silicon Switch Strategy[J]. Journal of Agricultural and Food Chemistry, 2021, 69(13): 3965-3971.
[15] BIKZHANOVA GA, TOULOKHNOVA IS, GATELY S, et al. Novel silicon-containing drugs derived from the indomethacin scaffold: Synthesis, characterization and evaluation of biological activity[J]. Silicon Chemistry, 2007, 3: 209-217.
[16] HENRY MJ. Mode of action of the fungicide flusilazole in ustilago maydis[J]. Pesticide Science, 1990, 28(1): 35-42.
[17] EFSA. Peer review of the pesticide risk assessment of the active substance silthiofam[J]. EFSA Journal, 2016, 14(8): e04574.
[18] HAGA TK. Synthesis and Chemistry of Agrochemicals IV[M]. IV. 1995, Washington, DC: American Chemical Society, 1995: 15-24.
[19] ZHOU C, CHENG JG, BEADLE R, et al. Design, synthesis and acaricidal activities of Cyflumetofen analogues based on carbon-silicon isosteric replacement[J]. Bioorganic & Medicinal Chemistry, 2020, 28(22): 115509-115519.
[20] GRIBBLE JR, PIRNOT MT, BANDAR JS, et al. Asymmetric Copper Hydride-Catalyzed Markovnikov Hydrosilylation of Vinylarenes and Vinyl Heterocycles[J]. Journal of the American Chemical Society, 2017, 139(6): 2192-2195.
[21] WEN HA, WAN XL, HUANG Z. Asymmetric Synthesis of Silicon-Stereogenic Vinylhydrosilanes by Cobalt-Catalyzed Regio- and Enantioselective Alkyne Hydrosilylation with Dihydrosilanes[J]. Angewandte Chemie-International Edition, 2018, 57(21): 6319-6323.
[22] CHENG B, LIU WB, LU Z. Iron-Catalyzed Highly Enantioselective Hydrosilylation of Unactivated Terminal Alkenes[J]. Journal of the American Chemical Society, 2018, 140(15): 5014-5017.
[23] KITANOSONO T, ZHU L, LIU C, et al. An Insoluble Copper(II) Acetylacetonate–Chiral Bipyridine Complex that Catalyzes Asymmetric Silyl Conjugate Addition in Water[J]. Journal of the American Chemical Society, 2015, 137(49): 15422-15425.
[24] ZHANG YX, HANG J, GUO YY, et al. Access to Enantioenriched Organosilanes from Enals and β-Silyl Enones: Carbene Organocatalysis[J]. Angewandte Chemie International Edition, 2018, 57(17): 4594-4598.
[25] LANDAIS Y, PLANCHENAULT D. Asymmetric metal carbene insertion into the Si-H bond[J]. Tetrahedron Letters, 1994, 35(26): 4565-4568.
[26] RICHARD T.BUCK, MICHAEL P. DOYLE, MARTIN J. DRYSDALE, et al. Asymmetric rhodium carbenoid insertion into the Si-H bond[J]. Tetrahedron Letters, 1996, 37(42): 7631-7634.
[27] DAVIES ML, HANSE T, RUTBERG J, et al. Rhodium(II) (S)-N-(arylsulfonyl)prolinate catalyzed asymmetric insertions of vinyl- and phenylcarbenoids into the Si-H bond[J]. Tetrahedron Letters, 1997, 38(10): 1741-1744.
[28] KITAGAKI S, KINOSHITA M, MASAKOTAKEBA, et al. Enantioselective Si-H insertion of methyl phenyldiazoacetate catalyzed by dirhodium(II) carboxylates incorporating N-phthaloyl-(S)-amino acids as chiral bridging ligands[J]. Tetrahedron: Asymmetry, 2000, 11(19): 3855-3859.
[29] YASUTOMI Y, SUEMATSU H, KATSUKI T. Iridium(III)-Catalyzed Enantioselective Si−H Bond Insertion and Formation of an Enantioenriched Silicon Center[J]. Journal of the American Chemical Society, 2010, 132(13): 4510-4511.
[30] IGLESIAS MJ, NICASIO MC, CABALLERO A, et al. Silver-catalyzed silicon-hydrogen bond functionalization by carbene insertion[J]. Dalton Trans, 2013, 42(4): 1191-1195.
[31] KAN SB, LEWIS RD, CHEN K, et al. Directed evolution of cytochrome c for carbon–silicon bond formation: Bringing silicon to life[J]. Science, 2016, 354(6315): 1048-1051.
[32] NAKAGAWA Y, CHANTHAMATH S, FUJISAWA I, et al. Ru(ii)-Pheox-catalyzed Si-H insertion reaction: construction of enantioenriched carbon and silicon centers[J]. Chem Commun (Camb), 2017, 53(26): 3753-3756.
[33] WANG Y, CUI H, WEI ZW, et al. Engineering catalytic coordination space in a chemically stable Ir-porphyrin MOF with a confinement effect inverting conventional Si-H insertion chemoselectivity[J]. Chem Sci, 2017, 8(1): 775-780.
[34] LIU Z, LI Q, YANG Y, et al. Silver(i)-promoted insertion into X-H (X = Si, Sn, and Ge) bonds with N-nosylhydrazones[J]. Chem Commun (Camb), 2017, 53(16): 2503-2506.
[35] LIU Z, HUO J, FU T, et al. Palladium(0)-catalyzed C(sp(3))-Si bond formation via formal carbene insertion into a Si-H bond[J]. Chem Commun (Camb), 2018, 54(81): 11419-11422.
[36] WANG EH, PING YJ, LI ZR, et al. Iron Porphyrin Catalyzed Insertion Reaction of N-Tosylhydrazone-Derived Carbenes into X-H (X = Si, Sn, Ge) Bonds[J]. Org Lett, 2018, 20(15): 4641-4644.
[37] SHEFFIELD W, ABSHIRE A, DARKO A. Effect of Tethered, Axial Thioether Coordination on Rhodium(II)-Catalyzed Silyl-Hydrogen Insertion[J]. European Journal of Organic Chemistry, 2019, 2019(37): 6347-6351.
[38] HUANG MY, YANG JM, ZHAO YT, et al. Rhodium-Catalyzed Si–H Bond Insertion Reactions Using Functionalized Alkynes as Carbene Precursors[J]. ACS Catalysis, 2019, 9(6): 5353-5357.
[39] JAGANNATHAN J R, FETTINGER J C, SHAW J T, et al. Enantioselective Si-H Insertion Reactions of Diarylcarbenes for the Synthesis of Silicon-Stereogenic Silanes[J]. J Am Chem Soc, 2020, 142(27): 11674-11679.
[40] YANG LL, EVANS D, XU B, et al. Enantioselective Diarylcarbene Insertion into Si-H Bonds Induced by Electronic Properties of the Carbenes[J]. J Am Chem Soc, 2020, 142(28): 12394-12399.
[41] YANG LL, OUYANG J, ZOU HN, et al. Enantioselective Insertion of Alkynyl Carbenes into Si-H Bonds: An Efficient Access to Chiral Propargylsilanes and Allenylsilanes[J]. J Am Chem Soc, 2021, 143(17): 6401-6406.
[42] YANG LL, CAO J, ZHAO TY, et al. Chiral Dirhodium Tetraphosphate-Catalyzed Enantioselective Si-H Bond Insertion of alpha-Aryldiazoacetates[J]. J Org Chem, 2021, 86(14): 9692-9698.
[43] LIU B, XU MH. Rhodium(I)-Catalyzed Enantioselective C(sp3)—H Functionalization via Carbene-Induced Asymmetric Intermolecular C—H Insertion[J]. Chinese Journal of Chemistry, 2021, 39(7): 1911-1915.
[44] ZHU DX, XIA H, LIU JG, et al. Regiospecific and Enantioselective Arylvinylcarbene Insertion of a C-H Bond of Aniline Derivatives Enabled by a Rh(I)-Diene Catalyst[J]. J Am Chem Soc, 2021, 143(6): 2608-2619.
[45] ZHU D X, LIU J G, XU M H. Stereodivergent Synthesis of Enantioenriched 2,3-Disubstituted Dihydrobenzofurans via a One-Pot C-H Functionalization/Oxa-Michael Addition Cascade[J]. J Am Chem Soc, 2021, 143(23): 8583-8589.
[46] SUN YT, RAO XF, XU WC, XU MH. Rhodium(I)-catalyzed C–S bond formation via enantioselective carbenoid S–H insertion: catalytic asymmetric synthesis of α-thioesters[J]. Organic Chemistry Frontiers, 2022, 9(13): 3467-3472.
[47] WANG TY, CHEN XX, ZHU DX, et al. Rhodium(I) Carbene-Promoted Enantioselective C-H Functionalization of Simple Unprotected Indoles, Pyrroles and Heteroanalogues: New Mechanistic Insights[J]. Angew Chem Int Ed Engl, 2022, 61(34): e202207008.
[48] CHEN D, ZHU DX, XU MH. Rhodium(I)-Catalyzed Highly Enantioselective Insertion of Carbenoid into Si–H: Efficient Access to Functional Chiral Silanes[J]. Journal of the American Chemical Society, 2016, 138(5): 1498–1501.
[49] JAGANNATHAN JR, FETTINGER JC, SHAW JT, et al. Enantioselective Si–H Insertion Reactions of Diarylcarbenes for the Synthesis of Silicon-Stereogenic Silanes[J]. Journal of the American Chemical Society, 2020, 142(27): 11674-11679.
[50] DOYLE MP. Chiral catalysts for enantioselective carbenoid cyclopropanation reactions[J]. Recueil Des Travaux Chimiques Des Pays-Bas et de la Belgique, 1991, 110(7-8): 305-316.
[51] LANDAIS Y, PARRA-RAPADO L, PLANCHENAULT D. Mechanism of metal-carbenoid insertion into the SiH bond[J]. Tetrahedron Letters, 1996, 38(2): 229-232.
[52] DIAZ DB, YUDIN AK. The versatility of boron in biological target engagement[J]. Nature Chemistry, 2017, 9: 731–742.
[53] BAKER SJ, TOMSHO JW, BENKOVIC SJ. Boron-containing inhibitors of synthetases[J]. Chemical Society Reviews, 2011, 40(8): 4279-4285.
[54] BAKER SJ, DING CZ, AKAMA T, et al. Therapeutic potential of boron-containing compounds[J]. Future Medicinal Chemistry, 2009, 1(7): 1275-1288.
[55] GROZIAK MP. Boron Therapeutics on the Horizon[J]. American Journal of Therapeutics, 2001, 8(5): 321–328.
[56] BROWN HC. From little acorns to tall oaks: from boranes through organoboranes[J]. Science, 1980, 210(4469): 485-492.
[57] XU L, WANG GH, et al. Recent advances in catalytic C−H borylation reactions[J]. Tetrahedron Letters, 2017, 73(51): 7123-7157.
[58] WANG GH, XU L, LI PF. Double N,B-Type Bidentate Boryl Ligands Enabling a Highly Active Iridium Catalyst for C–H Borylation[J]. Journal of the American Chemical Society, 2015, 137(25): 8058–8061.
[59] IBRAHEEM AI, JONATHAN HB, TODD BM, et al. C−H Activation for the Construction of C−B Bonds[J]. Chemical Reviews, 2010, 110(2): 890–931.
[60] ISHIYAMA T, MURATA M, MIYAURA N. Palladium(0)-Catalyzed Cross-Coupling Reaction of Alkoxydiboron with Haloarenes: A Direct Procedure for Arylboronic Esters[J]. The Journal of Organic Chemistry, 1995, 60(23): 7508–7510.
[61] BURGESS K, OHLMEYER MJ. Transition-metal promoted hydroborations of alkenes, emerging methodology for organic transformations[J]. Chemical Reviews, 1991, 91(6): 1179–1191.
[62] ZHAO Q, DEWHURST RD, BRAUNSCHWEIG H, et al. A New Perspective on Borane Chemistry: The Nucleophilicity of the B-H Bonding Pair Electrons[J]. Angew Chem Int Ed Engl, 2019, 58(11): 3268-3278.
[63] LI X, CURRAN DP. Insertion of reactive rhodium carbenes into boron-hydrogen bonds of stable N-heterocyclic carbene boranes[J]. J Am Chem Soc, 2013, 135(32): 12076-12081.
[64] CHENG QQ, ZHU SF, ZHANG YZ, et al. Copper-catalyzed B-H bond insertion reaction: a highly efficient and enantioselective C-B bond-forming reaction with amine-borane and phosphine-borane adducts[J]. J Am Chem Soc, 2013, 135(38): 14094-14097.
[65] CHENG QQ, XU H, ZHU SF, et al. Enantioselective Copper-Catalyzed B—H Bond Insertion Reaction of α-Diazoketones[J]. Acta Chimica Sinica, 2015, 73(4)
[66] ALLEN TH, CURRAN DP. Relative Reactivity of Stable Ligated Boranes and a Borohydride Salt in Rhodium(II)-Catalyzed Boron-Hydrogen Insertion Reactions[J]. J Org Chem, 2016, 81(5): 2094-2098.
[67] ALLEN TH, KAWAMOTO T, GARDNER S, et al. N-Heterocyclic Carbene Boryl Iodides Catalyze Insertion Reactions of N-Heterocyclic Carbene Boranes and Diazoesters[J]. Org Lett, 2017, 19(13): 3680-3683.
[68] YANG JM, LI ZQ, LI ML, et al. Catalytic B-H Bond Insertion Reactions Using Alkynes as Carbene Precursors[J]. J Am Chem Soc, 2017, 139(10): 3784-3789.
[69] KAN SB, HUANG X, GUMULYA Y, et al. Genetically programmed chiral organoborane synthesis[J]. Nature, 2017, 552(7683): 132-136.
[70] PANG Y, HE Q, LI ZQ, et al. Rhodium-Catalyzed B-H Bond Insertion Reactions of Unstabilized Diazo Compounds Generated in Situ from Tosylhydrazones[J]. J Am Chem Soc, 2018, 140(34): 10663-10668.
[71] BROOK AG. Molecular rearrangements of organosilicon compounds[J]. Accounts of Chemical Research, 1974, 7(3): 77–84.
[72] YE JH, QUACH L, PAULISCH T, et al. Visible-Light-Induced, Metal-Free Carbene Insertion into B-H Bonds between Acylsilanes and Pinacolborane[J]. J Am Chem Soc, 2019, 141(41): 16227-16231.
[73] LI J, HE H, HUANG M, et al. Iridium-Catalyzed B-H Bond Insertion Reactions Using Sulfoxonium Ylides as Carbene Precursors toward alpha-Boryl Carbonyls[J]. Org Lett, 2019, 21(22): 9005-9008.
[74] HUANG X, GARCIA-BORRAS M, MIAO K, et al. A Biocatalytic Platform for Synthesis of Chiral alpha-Trifluoromethylated Organoborons[J]. ACS Cent Sci, 2019, 5(2): 270-276.
[75] CHEN K, HUANG X, ZHANG SQ, et al. Engineered Cytochrome c-Catalyzed Lactone-Carbene B-H Insertion[J]. Synlett, 2019, 30(4): 378-382.
[76] ZHANG SS, XIE H, SHUB, et al. Iridium-catalyzed B-H insertion of sulfoxonium ylides and borane adducts: a versatile platform to alpha-boryl carbonyls[J]. Chem Commun (Camb), 2020, 56(3): 423-426.
[77] DRIKERMANN D, MOSSEL RS, AL-JAMMAL WK, et al. Synthesis of Allylboranes via Cu(I)-Catalyzed B-H Insertion of Vinyldiazoacetates into Phosphine-Borane Adducts[J]. Org Lett, 2020, 22(3): 1091-1095.
[78] OTOG N, CHANTHAMATH S, FUJISAWA I, et al. Catalytic Asymmetric Carbene Insertion Reactions into B−H Bonds Using a Ru(II)‐Pheox Complex[J]. European Journal of Organic Chemistry, 2021, 2021(10): 1564-1567.
[79] ANKUDINOV NM, CHUSOV DA, NELYUBINA YV, et al. Synthesis of Rhodium Complexes with Chiral Diene Ligands via Diastereoselective Coordination and Their Application in the Asymmetric Insertion of Diazo Compounds into E-H Bonds[J]. Angew Chem Int Ed Engl, 2021, 60(34): 18712-18720.
[80] ZHAO YT, SU YX, LI XY, et al. Dirhodium-Catalyzed Enantioselective B-H Bond Insertion of gem-Diaryl Carbenes: Efficient Access to gem-Diarylmethine Boranes[J]. Angew Chem Int Ed Engl, 2021, 60(45): 24214-24219.
[81] WENG CY, ZHU GY, ZHU BH, et al. A copper-catalyzed B–H bond insertion reaction of azide–ynamide with borane adducts via α-imino copper carbenes[J]. Organic Chemistry Frontiers, 2022, 9(10): 2773-2778.
[82] HUANG MY, ZHAO YT, ZHANG CD, et al. Highly Regio-, Stereo-, and Enantioselective Copper-Catalyzed B-H Bond Insertion of alpha-Silylcarbenes: Efficient Access to Chiral Allylic gem-Silylboranes[J]. Angew Chem Int Ed Engl, 2022, 61(26): e202203343.
[83] ZHANG G, ZHANG Z, HOU M, et al. Construction of boron-stereogenic compounds via enantioselective Cu-catalyzed desymmetric B-H bond insertion reaction[J]. Nat Commun, 2022, 13(1): 2624.
[84] CHEN D, ZHANG X, QI WY, et al. Rhodium(I)-catalyzed asymmetric carbene insertion into B-H bonds: highly enantioselective access to functionalized organoboranes[J]. J Am Chem Soc, 2015, 137(16): 5268-5271.
修改评论