[1] ASAMI M, LAM B Y, MA M K, et al. Human embryonic genome activation initiates at the one-cell stage [J]. Cell stem cell, 2022, 29(2): 209-16. e4.
[2] LEE M T, BONNEAU A R, TAKACS C M, et al. Nanog, Pou5f1 and SoxB1 activate zygotic gene expression during the maternal-to-zygotic transition [J]. Nature, 2013, 503(7476): 360-4.
[3] MEIER M, GRANT J, DOWDLE A, et al. Cohesin facilitates zygotic genome activation in zebrafish [J]. Development, 2018, 145(1): dev156521.
[4] CHAN S H, TANG Y, MIAO L, et al. Brd4 and P300 confer transcriptional competency during zygotic genome activation [J]. Developmental cell, 2019, 49(6): 867-81. e8.
[5] HAMM D C, HARRISON M M. Regulatory principles governing the maternal-to-zygotic transition: insights from Drosophila melanogaster [J]. Royal society open biology, 2018, 8(12): 180183.
[6] EDGAR B A, KIEHLE C P, SCHUBIGER G. Cell cycle control by the nucleo-cytoplasmic ratio in early Drosophila development [J]. Cell, 1986, 44(2): 365-72.
[7] HARRISON M M, BOTCHAN M R, CLINE T W. Grainyhead and Zelda compete for binding to the promoters of the earliest-expressed Drosophila genes [J]. Developmental biology, 2010, 345(2): 248-55.
[8] KIMELMAN D, KIRSCHNER M, SCHERSON T. The events of the midblastula transition in Xenopus are regulated by changes in the cell cycle [J]. Cell, 1987, 48(3): 399-407.
[9] COLLART C, ALLEN G E, BRADSHAW C R, et al. Titration of four replication factors is essential for the Xenopus laevis midblastula transition [J]. Science, 2013, 341(6148): 893-6.
[10] DI TALIA S, SHE R, BLYTHE S A, et al. Posttranslational control of Cdc25 degradation terminates Drosophila’s early cell-cycle program [J]. Current biology, 2013, 23(2): 127-32.
[11] JEVTIĆ P, LEVY D L. Both nuclear size and DNA amount contribute to midblastula transition timing in Xenopus laevis [J]. Scientific reports, 2017, 7(1): 1-9.
[12] AMODEO A A, JUKAM D, STRAIGHT A F, et al. Histone titration against the genome sets the DNA-to-cytoplasm threshold for the Xenopus midblastula transition [J]. Proceedings of the national academy of sciences, 2015, 112(10): E1086-E95.
[13] DUNICAN D S, RUZOV A, HACKETT J A, et al. xDnmt1 regulates transcriptional silencing in pre-MBT Xenopus embryos independently of its catalytic function [J]. 2008.
[14] CHEN H, EINSTEIN L C, LITTLE S C, et al. Spatiotemporal patterning of zygotic genome activation in a model vertebrate embryo [J]. Developmental cell, 2019, 49(6): 852-66. e7.
[15] JUKAM D, KAPOOR R R, STRAIGHT A F, et al. The DNA-to-cytoplasm ratio broadly activates zygotic gene expression in Xenopus [J]. Current biology, 2021, 31(19): 4269-81. e8.
[16] NIAKAN K K, HAN J, PEDERSEN R A, et al. Human pre-implantation embryo development [J]. Development, 2012, 139(5): 829-41.
[17] AIKEN C E, SWOBODA P P, SKEPPER J N, et al. The direct measurement of embryogenic volume and nucleo-cytoplasmic ratio during mouse pre-implantation development [J]. Reproduction, 2004, 128(5): 527-35.
[18] DU Z-Q, LIANG H, LIU X-M, et al. Single cell RNA-seq reveals genes vital to in vitro fertilized embryos and parthenotes in pigs [J]. Scientific reports, 2021, 11(1): 1-13.
[19] LI E, BEARD C, JAENISCH R. Role for DNA methylation in genomic imprinting [J]. Nature, 1993, 366(6453): 362-5.
[20] PANNING B. X-chromosome inactivation: the molecular basis of silencing [J]. Journal of biology, 2008, 7(8): 1-4.
[21] GKOUNTELA S, ZHANG K X, SHAFIQ T A, et al. DNA demethylation dynamics in the human prenatal germline [J]. Cell, 2015, 161(6): 1425-36.
[22] SHEARSTONE J R, POP R, BOCK C, et al. Global DNA demethylation during mouse erythropoiesis in vivo [J]. Science, 2011, 334(6057): 799-802.
[23] GUO H, ZHU P, YAN L, et al. The DNA methylation landscape of human early embryos [J]. Nature, 2014, 511(7511): 606-10.
[24] SHEN L, INOUE A, HE J, et al. Tet3 and DNA replication mediate demethylation of both the maternal and paternal genomes in mouse zygotes [J]. Cell stem cell, 2014, 15(4): 459-71.
[25] BOGDANOVIĆ O, LONG S W, VAN HEERINGEN S J, et al. Temporal uncoupling of the DNA methylome and transcriptional repression during embryogenesis [J]. Genome research, 2011, 21(8): 1313-27.
[26] JIANG L, ZHANG J, WANG J-J, et al. Sperm, but not oocyte, DNA methylome is inherited by zebrafish early embryos [J]. Cell, 2013, 153(4): 773-84.
[27] POTOK M E, NIX D A, PARNELL T J, et al. Reprogramming the maternal zebrafish genome after fertilization to match the paternal methylation pattern [J]. Cell, 2013, 153(4): 759-72.
[28] KELLY W G. Transgenerational epigenetics in the germline cycle of Caenorhabditis elegans [J]. Epigenetics & chromatin, 2014, 7(1): 1-17.
[29] TAKAYAMA S, DHAHBI J, ROBERTS A, et al. Genome methylation in D. melanogaster is found at specific short motifs and is independent of DNMT2 activity [J]. Genome research, 2014, 24(5): 821-30.
[30] LI X-Y, HARRISON M M, VILLALTA J E, et al. Establishment of regions of genomic activity during the Drosophila maternal to zygotic transition [J]. Elife, 2014, 3: e03737.
[31] SATO Y, HILBERT L, ODA H, et al. Histone H3K27 acetylation precedes active transcription during zebrafish zygotic genome activation as revealed by live-cell analysis [J]. Development, 2019, 146(19): dev179127.
[32] GUPTA R, WILLS A, UCAR D, et al. Developmental enhancers are marked independently of zygotic Nodal signals in Xenopus [J]. Developmental biology, 2014, 395(1): 38-49.
[33] DAHL J A, JUNG I, AANES H, et al. Broad histone H3K4me3 domains in mouse oocytes modulate maternal-to-zygotic transition [J]. Nature, 2016, 537(7621): 548-52.
[34] XIA W, XU J, YU G, et al. Resetting histone modifications during human parental-to-zygotic transition [J]. Science, 2019, 365(6451): 353-60.
[35] EISSENBERG J C, SHILATIFARD A. Histone H3 lysine 4 (H3K4) methylation in development and differentiation [J]. Developmental biology, 2010, 339(2): 240-9.
[36] CHEN K, JOHNSTON J, SHAO W, et al. A global change in RNA polymerase II pausing during the Drosophila midblastula transition [J]. Elife, 2013, 2: e00861.
[37] LINDEMAN L C, ANDERSEN I S, REINER A H, et al. Prepatterning of developmental gene expression by modified histones before zygotic genome activation [J]. Developmental cell, 2011, 21(6): 993-1004.
[38] HONTELEZ S, VAN KRUIJSBERGEN I, GEORGIOU G, et al. Embryonic transcription is controlled by maternally defined chromatin state [J]. Nature communications, 2015, 6(1): 1-13.
[39] AOSHIMA K, INOUE E, SAWA H, et al. Paternal H3K4 methylation is required for minor zygotic gene activation and early mouse embryonic development [J]. EMBO reports, 2015, 16(7): 803-12.
[40] ZENK F, LOESER E, SCHIAVO R, et al. Germ line–inherited H3K27me3 restricts enhancer function during maternal-to-zygotic transition [J]. Science, 2017, 357(6347): 212-6.
[41] GAYDOS L J, WANG W, STROME S. H3K27me and PRC2 transmit a memory of repression across generations and during development [J]. Science, 2014, 345(6203): 1515-8.
[42] VASTENHOUW N L, ZHANG Y, WOODS I G, et al. Chromatin signature of embryonic pluripotency is established during genome activation [J]. Nature, 2010, 464(7290): 922-6.
[43] BERNSTEIN B E, MIKKELSEN T S, XIE X, et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells [J]. Cell, 2006, 125(2): 315-26.
[44] XU R, LI S, WU Q, et al. Stage-specific H3K9me3 occupancy ensures retrotransposon silencing in human pre-implantation embryos [J]. Cell stem cell, 2022, 29(7): 1051-66. e8.
[45] LIANG H-L, NIEN C-Y, LIU H-Y, et al. The zinc-finger protein Zelda is a key activator of the early zygotic genome in Drosophila [J]. Nature, 2008, 456(7220): 400-3.
[46] NIEN C-Y, LIANG H-L, BUTCHER S, et al. Temporal coordination of gene networks by Zelda in the early Drosophila embryo [J]. PLoS genetics, 2011, 7(10): e1002339.
[47] LEICHSENRING M, MAES J, MÖSSNER R, et al. Pou5f1 transcription factor controls zygotic gene activation in vertebrates [J]. Science, 2013, 341(6149): 1005-9.
[48] MIAO L, TANG Y, BONNEAU A R, et al. The landscape of pioneer factor activity reveals the mechanisms of chromatin reprogramming and genome activation [J]. Molecular cell, 2022, 82(5): 986-1002. e9.
[49] GENTSCH G E, SPRUCE T, OWENS N D, et al. Maternal pluripotency factors initiate extensive chromatin remodelling to predefine first response to inductive signals [J]. Nature communications, 2019, 10(1): 1-22.
[50] AFOUDA B A, NAKAMURA Y, SHAW S, et al. Foxh1/Nodal defines context-specific direct maternal Wnt/β-catenin target gene regulation in early development [J]. Iscience, 2020, 23(7): 101314.
[51] LU F, LIU Y, INOUE A, et al. Establishing chromatin regulatory landscape during mouse preimplantation development [J]. Cell, 2016, 165(6): 1375-88.
[52] GAO L, WU K, LIU Z, et al. Chromatin accessibility landscape in human early embryos and its association with evolution [J]. Cell, 2018, 173(1): 248-59. e15.
[53] LE BIN G C, MUÑOZ-DESCALZO S, KUROWSKI A, et al. Oct4 is required for lineage priming in the developing inner cell mass of the mouse blastocyst [J]. Development, 2014, 141(5): 1001-10.
[54] DE IACO A, PLANET E, COLUCCIO A, et al. DUX-family transcription factors regulate zygotic genome activation in placental mammals [J]. Nature genetics, 2017, 49(6): 941-5.
[55] HENDRICKSON P G, DORÁIS J A, GROW E J, et al. Conserved roles of mouse DUX and human DUX4 in activating cleavage-stage genes and MERVL/HERVL retrotransposons [J]. Nature genetics, 2017, 49(6): 925-34.
[56] WHIDDON J L, LANGFORD A T, WONG C-J, et al. Conservation and innovation in the DUX4-family gene network [J]. Nature genetics, 2017, 49(6): 935-40.
[57] CHEN Z, ZHANG Y. Loss of DUX causes minor defects in zygotic genome activation and is compatible with mouse development [J]. Nature genetics, 2019, 51(6): 947-51.
[58] LIU Y, LU X, YE M, et al. Efficient silencing of the multicopy DUX4 gene by ABE-mediated start codon mutation in human embryos [J]. Journal of genetics and genomics= Yi chuan xue bao, 2022: S1673-8527 (22) 00050-9.
[59] LIEBERMAN-AIDEN E, VAN BERKUM N L, WILLIAMS L, et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome [J]. Science, 2009, 326(5950): 289-93.
[60] DE LAAT W, DUBOULE D. Topology of mammalian developmental enhancers and their regulatory landscapes [J]. Nature, 2013, 502(7472): 499-506.
[61] DIXON J R, SELVARAJ S, YUE F, et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions [J]. Nature, 2012, 485(7398): 376-80.
[62] HOU C, LI L, QIN Z S, et al. Gene density, transcription, and insulators contribute to the partition of the Drosophila genome into physical domains [J]. Molecular cell, 2012, 48(3): 471-84.
[63] HUG C B, GRIMALDI A G, KRUSE K, et al. Chromatin architecture emerges during zygotic genome activation independent of transcription [J]. Cell, 2017, 169(2): 216-28. e19.
[64] KE Y, XU Y, CHEN X, et al. 3D chromatin structures of mature gametes and structural reprogramming during mammalian embryogenesis [J]. Cell, 2017, 170(2): 367-81. e20.
[65] DU Z, ZHENG H, HUANG B, et al. Allelic reprogramming of 3D chromatin architecture during early mammalian development [J]. Nature, 2017, 547(7662): 232-5.
[66] NIU L, SHEN W, SHI Z, et al. Three-dimensional folding dynamics of the Xenopus tropicalis genome [J]. Nature genetics, 2021, 53(7): 1075-87.
[67] KAAIJ L J, VAN DER WEIDE R H, KETTING R F, et al. Systemic loss and gain of chromatin architecture throughout zebrafish development [J]. Cell reports, 2018, 24(1): 1-10. e4.
[68] CHEN X, KE Y, WU K, et al. Key role for CTCF in establishing chromatin structure in human embryos [J]. Nature, 2019, 576(7786): 306-10.
[69] MAZID M, WARD C, LUO Z, et al. Rolling back human pluripotent stem cells to an eight-cell embryo-like stage [J]. Nature, 2022, 605(7909): 315-24.
[70] TAUBENSCHMID-STOWERS J, ROSTOVSKAYA M, SANTOS F, et al. 8C-like cells capture the human zygotic genome activation program in vitro [J]. Cell stem cell, 2022, 29(3): 449-59. e6.
[71] TAFT R J, PHEASANT M, MATTICK J S. The relationship between non‐protein‐coding DNA and eukaryotic complexity [J]. Bioessays, 2007, 29(3): 288-99.
[72] HOWE K, CLARK M D, TORROJA C F, et al. The zebrafish reference genome sequence and its relationship to the human genome [J]. Nature, 2013, 496(7446): 498-503.
[73] HELLSTEN U, HARLAND R M, GILCHRIST M J, et al. The genome of the Western clawed frog Xenopus tropicalis [J]. Science, 2010, 328(5978): 633-6.
[74] BANERJI J, RUSCONI S, SCHAFFNER W. Expression of a β-globin gene is enhanced by remote SV40 DNA sequences [J]. Cell, 1981, 27(2): 299-308.
[75] MOREAU P, HEN R, WASYLYK B, et al. The SV40 72 base repair repeat has a striking effect on gene expression both in SV40 and other chimeric recombinants [J]. Nucleic acids research, 1981, 9(22): 6047-68.
[76] POTT S, LIEB J D. What are super-enhancers? [J]. Nature genetics, 2015, 47(1): 8-12.
[77] WANG X, CAIRNS M J, YAN J. Super-enhancers in transcriptional regulation and genome organization [J]. Nucleic acids research, 2019, 47(22): 11481-96.
[78] FURLONG E E, LEVINE M. Developmental enhancers and chromosome topology [J]. Science, 2018, 361(6409): 1341-5.
[79] ROLLINS R A, MORCILLO P, DORSETT D. Nipped-B, a Drosophila homologue of chromosomal adherins, participates in activation by remote enhancers in the cut and Ultrabithorax genes [J]. Genetics, 1999, 152(2): 577-93.
[80] GAO D, ZHU B, CAO X, et al. Roles of NIPBL in maintenance of genome stability; proceedings of the Seminars in cell & developmental biology, F, 2019 [C]. Elsevier.
[81] SHI Z, GAO H, BAI X-C, et al. Cryo-EM structure of the human cohesin-NIPBL-DNA complex [J]. Science, 2020, 368(6498): 1454-9.
[82] LUPIÁÑEZ D G, KRAFT K, HEINRICH V, et al. Disruptions of topological chromatin domains cause pathogenic rewiring of gene-enhancer interactions [J]. Cell, 2015, 161(5): 1012-25.
[83] KAWAKAMI K, ABE G, ASADA T, et al. zTrap: zebrafish gene trap and enhancer trap database [J]. BMC developmental biology, 2010, 10(1): 1-10.
[84] BRONCHAIN O J, HARTLEY K O, AMAYA E. A gene trap approach in Xenopus [J]. Current biology, 1999, 9(20): 1195-S1.
[85] WONG E S, ZHENG D, TAN S Z, et al. Deep conservation of the enhancer regulatory code in animals [J]. Science, 2020, 370(6517): eaax8137.
[86] BEER M A, SHIGAKI D, HAUNGFU D. Enhancer predictions and genome-wide regulatory circuits [J]. Annual review of genomics and human genetics, 2020, 21: 37.
[87] MIN X, LU F, LI C. Sequence-based deep learning frameworks on enhancer-promoter interactions prediction [J]. Current pharmaceutical design, 2021, 27(15): 1847-55.
[88] MINNOYE L, TASKIRAN I I, MAUDUIT D, et al. Cross-species analysis of enhancer logic using deep learning [J]. Genome research, 2020, 30(12): 1815-34.
[89] ARNOLD C D, GERLACH D, STELZER C, et al. Genome-wide quantitative enhancer activity maps identified by STARR-seq [J]. Science, 2013, 339(6123): 1074-7.
[90] KHERADPOUR P, ERNST J, MELNIKOV A, et al. Systematic dissection of regulatory motifs in 2000 predicted human enhancers using a massively parallel reporter assay [J]. Genome research, 2013, 23(5): 800-11.
[91] DICKEL D E, ZHU Y, NORD A S, et al. Function-based identification of mammalian enhancers using site-specific integration [J]. Nature methods, 2014, 11(5): 566-71.
[92] MURTHA M, TOKCAER-KESKIN Z, TANG Z, et al. FIREWACh: high-throughput functional detection of transcriptional regulatory modules in mammalian cells [J]. Nature methods, 2014, 11(5): 559-65.
[93] LIU Y, YU S, DHIMAN V K, et al. Functional assessment of human enhancer activities using whole-genome STARR-sequencing [J]. Genome biology, 2017, 18(1): 1-13.
[94] FLAMANT F, ZEKRI Y, GUYOT R. Functional definition of thyroid hormone response elements based on a synthetic STARR-seq screen [J]. Endocrinology, 2022, 163(8): bqac084.
[95] BARAKAT T S, HALBRITTER F, ZHANG M, et al. Functional dissection of the enhancer repertoire in human embryonic stem cells [J]. Cell stem cell, 2018, 23(2): 276-88. e8.
[96] CHAUDHRI V K, DIENGER-STAMBAUGH K, WU Z, et al. Charting the cis-regulome of activated B cells by coupling structural and functional genomics [J]. Nature immunology, 2020, 21(2): 210-20.
[97] GLASER L V, STEIGER M, FUCHS A, et al. Assessing genome-wide dynamic changes in enhancer activity during early mESC differentiation by FAIRE-STARR-seq [J]. Nucleic acids research, 2021, 49(21): 12178-95.
[98] PENG T, ZHAI Y, ATLASI Y, et al. STARR-seq identifies active, chromatin-masked, and dormant enhancers in pluripotent mouse embryonic stem cells [J]. Genome biology, 2020, 21(1): 1-27.
[99] SUN J, HE N, NIU L, et al. Global quantitative mapping of enhancers in rice by STARR-seq [J]. Genomics, proteomics & bioinformatics, 2019, 17(2): 140-53.
[100] JORES T, TONNIES J, DORRITY M W, et al. Identification of plant enhancers and their constituent elements by STARR-seq in tobacco leaves [J]. The plant cell, 2020, 32(7): 2120-31.
[101] LI J, SHOU J, GUO Y, et al. Efficient inversions and duplications of mammalian regulatory DNA elements and gene clusters by CRISPR/Cas9 [J]. Journal of molecular cell biology, 2015, 7(4): 284-98.
[102] CUNNINGHAM T J, LANCMAN J J, BERENGUER M, et al. Genomic knockout of two presumed forelimb Tbx5 enhancers reveals they are nonessential for limb development [J]. Cell reports, 2018, 23(11): 3146-51.
[103] THAKORE P I, D'IPPOLITO A M, SONG L, et al. Highly specific epigenome editing by CRISPR-Cas9 repressors for silencing of distal regulatory elements [J]. Nature methods, 2015, 12(12): 1143-9.
[104] FULCO C P, NASSER J, JONES T R, et al. Activity-by-contact model of enhancer–promoter regulation from thousands of CRISPR perturbations [J]. Nature genetics, 2019, 51(12): 1664-9.
[105] OGINO H, MCCONNELL W B, GRAINGER R M. Highly efficient transgenesis in Xenopus tropicalis using I-SceI meganuclease [J]. Mechanisms of development, 2006, 123(2): 103-13.
[106] CANNATELLA D C, TRUEB L. Evolution of pipoid frogs: intergeneric relationships of the aquatic frog family Pipidae (Anura) [J]. Zoological journal of the linnean society, 1988, 94(1): 1-38.
[107] SESSION A M, UNO Y, KWON T, et al. Genome evolution in the allotetraploid frog Xenopus laevis [J]. Nature, 2016, 538(7625): 336-43.
[108] BRADLEY A, ANASTASSIADIS K, AYADI A, et al. The mammalian gene function resource: the International Knockout Mouse Consortium [J]. Mammalian genome, 2012, 23(9): 580-6.
[109] YOUNG J J, CHERONE J M, DOYON Y, et al. Efficient targeted gene disruption in the soma and germ line of the frog Xenopus tropicalis using engineered zinc-finger nucleases [J]. Proceedings of the national academy of sciences, 2011, 108(17): 7052-7.
[110] WOOD A J, LO T-W, ZEITLER B, et al. Targeted genome editing across species using ZFNs and TALENs [J]. Science, 2011, 333(6040): 307.
[111] MILLER J C, TAN S, QIAO G, et al. A TALE nuclease architecture for efficient genome editing [J]. Nature biotechnology, 2011, 29(2): 143-8.
[112] LEI Y, GUO X, LIU Y, et al. Efficient targeted gene disruption in Xenopus embryos using engineered transcription activator-like effector nucleases (TALENs) [J]. Proceedings of the national academy of sciences, 2012, 109(43): 17484-9.
[113] NAKAJIMA K, NAKAI Y, OKADA M, et al. Targeted gene disruption in the Xenopus tropicalis genome using designed TALE nucleases [J]. Zoological science, 2013, 30(6): 455-60.
[114] LEI Y, GUO X, DENG Y, et al. Generation of gene disruptions by transcription activator-like effector nucleases (TALENs) in Xenopus tropicalis embryos [J]. Cell & bioscience, 2013, 3(1): 1-10.
[115] NAERT T, VAN NIEUWENHUYSEN T, VLEMINCKX K. TALENs and CRISPR/Cas9 fuel genetically engineered clinically relevant Xenopus tropicalis tumor models [J]. Genesis, 2017, 55(1-2): e23005.
[116] VAN NIEUWENHUYSEN T, NAERT T, TRAN H T, et al. TALEN-mediated apc mutation in Xenopus tropicalis phenocopies familial adenomatous polyposis [J]. Oncoscience, 2015, 2(5): 555.
[117] EDWARDS N A, ZORN A M. Modeling endoderm development and disease in Xenopus [J]. Current topics in developmental biology, 2021, 145: 61-90.
[118] WATABE M, HIRAIWA A, SAKAI M, et al. Sperm MMP‐2 is indispensable for fast electrical block to polyspermy at fertilization in Xenopus tropicalis [J]. Molecular reproduction and development, 2021, 88(11): 744-57.
[119] JINEK M, CHYLINSKI K, FONFARA I, et al. A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity [J]. Science, 2012, 337(6096): 816-21.
[120] GUO X, ZHANG T, HU Z, et al. Efficient RNA/Cas9-mediated genome editing in Xenopus tropicalis [J]. Development, 2014, 141(3): 707-14.
[121] NAKAYAMA T, FISH M B, FISHER M, et al. Simple and efficient CRISPR/Cas9‐mediated targeted mutagenesis in Xenopus tropicalis [J]. Genesis, 2013, 51(12): 835-43.
[122] SHI Z, WANG F, CUI Y, et al. Heritable CRISPR/Cas9‐mediated targeted integration in Xenopus tropicalis [J]. The FASEB journal, 2015, 29(12): 4914-23.
[123] ASLAN Y, TADJUIDJE E, ZORN A M, et al. High-efficiency non-mosaic CRISPR-mediated knock-in and indel mutation in F0 Xenopus [J]. Development, 2017, 144(15): 2852-8.
[124] SHI Z, XIN H, TIAN D, et al. Modeling human point mutation diseases in Xenopus tropicalis with a modified CRISPR/Cas9 system [J]. The FASEB journal, 2019, 33(6): 6962-8.
[125] NAKAYAMA T, GRAINGER R M, CHA S W. Simple embryo injection of long single‐stranded donor templates with the CRISPR/Cas9 system leads to homology‐directed repair in Xenopus tropicalis and Xenopus laevis [J]. Genesis, 2020, 58(6): e23366.
[126] RAO S S, HUNTLEY M H, DURAND N C, et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping [J]. Cell, 2014, 159(7): 1665-80.
[127] FORTRIEDE J D, PELLS T J, CHU S, et al. Xenbase: deep integration of GEO & SRA RNA-seq and ChIP-seq data in a model organism database [J]. Nucleic acids research, 2020, 48(D1): D776-d82.
[128] LANGMEAD B, SALZBERG S L. Fast gapped-read alignment with Bowtie 2 [J]. Nature methods, 2012, 9(4): 357-9.
[129] DANECEK P, BONFIELD J K, LIDDLE J, et al. Twelve years of SAMtools and BCFtools [J]. Gigascience, 2021, 10(2): giab008.
[130] TARASOV A, VILELLA A J, CUPPEN E, et al. Sambamba: fast processing of NGS alignment formats [J]. Bioinformatics, 2015, 31(12): 2032-4.
[131] ZHANG Y, LIU T, MEYER C A, et al. Model-based analysis of ChIP-Seq (MACS) [J]. Genome biology, 2008, 9(9): 1-9.
[132] RAMÍREZ F, RYAN D P, GRÜNING B, et al. deepTools2: a next generation web server for deep-sequencing data analysis [J]. Nucleic acids research, 2016, 44(W1): W160-W5.
[133] YU G, WANG L G, HE Q Y. ChIPseeker: an R/Bioconductor package for ChIP peak annotation, comparison and visualization [J]. Bioinformatics, 2015, 31(14): 2382-3.
[134] BUTLER A, HOFFMAN P, SMIBERT P, et al. Integrating single-cell transcriptomic data across different conditions, technologies, and species [J]. Nature biotechnology, 2018, 36(5): 411-20.
[135] MCLEAY R C, BAILEY T L. Motif Enrichment Analysis: a unified framework and an evaluation on ChIP data [J]. BMC Bioinformatics, 2010, 11: 165.
[136] QUINLAN A R, HALL I M. BEDTools: a flexible suite of utilities for comparing genomic features [J]. Bioinformatics, 2010, 26(6): 841-2.
[137] BARISIC D, STADLER M B, IURLARO M, et al. Mammalian ISWI and SWI/SNF selectively mediate binding of distinct transcription factors [J]. Nature, 2019, 569(7754): 136-40.
[138] DURAND N C, SHAMIM M S, MACHOL I, et al. Juicer provides a one-click system for analyzing loop-resolution Hi-C experiments [J]. Cell system, 2016, 3(1): 95-8.
[139] HOUNKPE B W, CHENOU F, DE LIMA F, et al. HRT Atlas v1.0 database: redefining human and mouse housekeeping genes and candidate reference transcripts by mining massive RNA-seq datasets [J]. Nucleic acids research, 2021, 49(D1): D947-d55.
[140] PATRO R, DUGGAL G, LOVE M I, et al. Salmon provides fast and bias-aware quantification of transcript expression [J]. Nature methods, 2017, 14(4): 417-9.
[141] SMITH T F, WATERMAN M S. Comparison of biosequences [J]. Advances in applied mathematics, 1981, 2(4): 482-9.
[142] LAWRENCE M, HUBER W, PAGES H, et al. Software for computing and annotating genomic ranges [J]. PLoS computational biology, 2013, 9(8): e1003118.
[143] ASHBURNER M, BALL C A, BLAKE J A, et al. Gene ontology: tool for the unification of biology [J]. Nature genetics, 2000, 25(1): 25-9.
[144] VANHILLE L, GRIFFON A, MAQBOOL M A, et al. High-throughput and quantitative assessment of enhancer activity in mammals by CapStarr-seq [J]. Nature communications, 2015, 6(1): 1-10.
[145] KIECKER C, NIEHRS C. A morphogen gradient of Wnt/β-catenin signalling regulates anteroposterior neural patterning in Xenopus [J]. Development, 2001,128(21):4189-201.
[146] YASUOKA Y, SUZUKI Y, TAKAHASHI S, et al. Occupancy of tissue-specific cis-regulatory modules by Otx2 and TLE/Groucho for embryonic head specification [J]. Nature communications, 2014, 5(1): 1-14.
[147] YASUOKA Y, SHINZATO C, SATOH N. The mesoderm-forming gene brachyury regulates ectoderm-endoderm demarcation in the coral Acropora digitifera [J]. Current biology, 2016, 26(21): 2885-92.
[148] TAN C C S, MAURER-STROH S, WAN Y, et al. A novel method for the capture-based purification of whole viral native RNA genomes [J]. AMB express, 2019, 9(1): 1-9.
[149] BRIGHT A R, VEENSTRA G J C. Assay for transposase-accessible chromatin-sequencing using Xenopus embryos [J]. Cold spring harbor protocols, 2019, 2019(1): pdb. prot098327.
[150] ESMAEILI M, BLYTHE S A, TOBIAS J W, et al. Chromatin accessibility and histone acetylation in the regulation of competence in early development [J]. Developmental biology, 2020, 462(1): 20-35.
[151] BRIGHT A R, VAN GENESEN S, LI Q, et al. Combinatorial transcription factor activities on open chromatin induce embryonic heterogeneity in vertebrates [J]. The EMBO journal, 2021, 40(9): e104913.
[152] JANSEN C, PARAISO K D, ZHOU J J, et al. Uncovering the mesendoderm gene regulatory network through multi-omic data integration [J]. Cell reports, 2022, 38(7): 110364.
[153] MEERS M P, BRYSON T D, HENIKOFF J G, et al. Improved CUT&RUN chromatin profiling tools [J]. Elife, 2019, 8.
[154] KAYA-OKUR H S, JANSSENS D H, HENIKOFF J G, et al. Efficient low-cost chromatin profiling with CUT&Tag [J]. Nature protocols, 2020, 15(10): 3264-83.
[155] JANSSENS D H, MEERS M P, WU S J, et al. Automated CUT&Tag profiling of chromatin heterogeneity in mixed-lineage leukemia [J]. Nature genetics, 2021, 53(11): 1586-96.
[156] SKENE P J, HENIKOFF S. An efficient targeted nuclease strategy for high-resolution mapping of DNA binding sites [J]. Elife, 2017, 6: e21856.
[157] BARTOSOVIC M, KABBE M, CASTELO-BRANCO G. Single-cell CUT&Tag profiles histone modifications and transcription factors in complex tissues [J]. Nature biotechnology, 2021, 39(7): 825-35.
[158] XU J, KIDDER B L. H4K20me3 co-localizes with activating histone modifications at transcriptionally dynamic regions in embryonic stem cells [J]. BMC genomics, 2018, 19(1): 514.
[159] CHARNEY R M, FOROUZMAND E, CHO J S, et al. Foxh1 occupies cis-regulatory modules prior to dynamic transcription factor interactions controlling the mesendoderm gene program [J]. Developmental cell, 2017, 40(6): 595-607. e4.
[160] PARAISO K D, BLITZ I L, COLEY M, et al. Endodermal maternal transcription factors establish super-enhancers during zygotic genome activation [J]. Cell reports, 2019, 27(10): 2962-77. e5.
[161] SUBTELNY A O, EICHHORN S W, CHEN G R, et al. Poly(A)-tail profiling reveals an embryonic switch in translational control [J]. Nature, 2014, 508(7494): 66-71.
[162] GENTSCH G, MONTEIRO R, SMITH J. Cooperation between T-Box factors regulates the continuous segregation of germ layers during vertebrate embryogenesis [J]. Current topics in developmental biology, 2017, 122: 117-59.
[163] LOVÉN J, HOKE H A, LIN C Y, et al. Selective inhibition of tumor oncogenes by disruption of super-enhancers [J]. Cell, 2013, 153(2): 320-34.
[164] WHYTE W A, ORLANDO D A, HNISZ D, et al. Master transcription factors and mediator establish super-enhancers at key cell identity genes [J]. Cell, 2013, 153(2): 307-19.
[165] DEKKER J, RIPPE K, DEKKER M, et al. Capturing chromosome conformation [J]. Science, 2002, 295(5558): 1306-11.
[166] LIN X, LIU Y, LIU S, et al. Nested epistasis enhancer networks for robust genome regulation [J]. Science, 2022: eabk3512.
[167] HOUNKPE B W, CHENOU F, DE LIMA F, et al. HRT Atlas v1. 0 database: redefining human and mouse housekeeping genes and candidate reference transcripts by mining massive RNA-seq datasets [J]. Nucleic acids research, 2021, 49(D1): D947-D55.
[168] ZABIDI M A, ARNOLD C D, SCHERNHUBER K, et al. Enhancer–core-promoter specificity separates developmental and housekeeping gene regulation [J]. Nature, 2015, 518(7540): 556-9.
[169] ZUIN J, ROTH G, ZHAN Y, et al. Nonlinear control of transcription through enhancer-promoter interactions [J]. Nature, 2022, 604(7906): 571-7.
[170] KORKMAZ G, LOPES R, UGALDE A P, et al. Functional genetic screens for enhancer elements in the human genome using CRISPR-Cas9 [J]. Nature biotechnology, 2016, 34(2): 192-8.
[171] HAN R, LI L, UGALDE A P, et al. Functional CRISPR screen identifies AP1-associated enhancer regulating FOXF1 to modulate oncogene-induced senescence [J]. Genome biology, 2018, 19(1): 1-13.
[172] FEI T, LI W, PENG J, et al. Deciphering essential cistromes using genome-wide CRISPR screens [J]. Proceedings of the national academy of sciences, 2019, 116(50): 25186-95.
[173] CONG L, RAN F A, COX D, et al. Multiplex genome engineering using CRISPR/Cas systems [J]. Science, 2013, 339(6121): 819-23.
[174] PICKAR-OLIVER A, GERSBACH C A. The next generation of CRISPR–Cas technologies and applications [J]. Nature reviews molecular cell biology, 2019, 20(8): 490-507.
[175] RAN F A, CONG L, YAN W X, et al. In vivo genome editing using Staphylococcus aureus Cas9 [J]. Nature, 2015, 520(7546): 186-91.
[176] HOU Z, ZHANG Y, PROPSON N E, et al. Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis [J]. Proceedings of the national academy of sciences, 2013, 110(39): 15644-9.
[177] MÜLLER M, LEE C M, GASIUNAS G, et al. Streptococcus thermophilus CRISPR-Cas9 systems enable specific editing of the human genome [J]. Molecular therapy, 2016, 24(3): 636-44.
[178] KIM E, KOO T, PARK S W, et al. In vivo genome editing with a small Cas9 orthologue derived from Campylobacter jejuni [J]. Nature communications, 2017, 8(1): 1-12.
[179] KLEINSTIVER B P, PREW M S, TSAI S Q, et al. Engineered CRISPR-Cas9 nucleases with altered PAM specificities [J]. Nature, 2015.
[180] HU J H, MILLER S M, GEURTS M H, et al. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity [J]. Nature, 2018, 556(7699): 57-63.
[181] WALTON R T, CHRISTIE K A, WHITTAKER M N, et al. Unconstrained genome targeting with near-PAMless engineered CRISPR-Cas9 variants [J]. Science, 2020, 368(6488): 290-6.
[182] KLEINSTIVER B P, PREW M S, TSAI S Q, et al. Broadening the targeting range of Staphylococcus aureus CRISPR-Cas9 by modifying PAM recognition [J]. Nature Biotechnology, 2015, 33(12): 1293-8.
[183] CHATTERJEE P, LEE J, NIP L, et al. A Cas9 with PAM recognition for adenine dinucleotides [J]. Nature communications, 2020, 11(1): 1-6.
[184] ZETSCHE B, GOOTENBERG J S, ABUDAYYEH O O, et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system [J]. Cell, 2015, 163(3): 759-71.
[185] MORENO-MATEOS M A, FERNANDEZ J P, ROUET R, et al. CRISPR-Cpf1 mediates efficient homology-directed repair and temperature-controlled genome editing [J]. Nature communications, 2017, 8(1): 1-9.
[186] LIU P, LUK K, SHIN M, et al. Enhanced Cas12a editing in mammalian cells and zebrafish [J]. Nucleic acids research, 2019, 47(8): 4169-80.
[187] STRECKER J, JONES S, KOOPAL B, et al. Engineering of CRISPR-Cas12b for human genome editing [J]. Nature communications, 2019, 10(1): 212.
[188] WIERSON W A, SIMONE B W, WAREJONCAS Z, et al. Expanding the CRISPR toolbox with ErCas12a in zebrafish and human cells [J]. The CRISPR journal, 2019, 2(6): 417-33.
[189] HAN B, ZHANG Y, ZHOU Y, et al. ErCas12a and T5exo-ErCas12a Mediate Simple and Efficient Genome Editing in Zebrafish [J]. Biology (Basel), 2022, 11(3).
[190] HARLAND R M, GRAINGER R M. Xenopus research: metamorphosed by genetics and genomics [J]. Trends in genetics, 2011, 27(12): 507-15.
[191] CHEN F, DING X, FENG Y, et al. Targeted activation of diverse CRISPR-Cas systems for mammalian genome editing via proximal CRISPR targeting [J]. Nature communications, 2017, 8(1): 1-12.
[192] BAE S, PARK J, KIM J-S. Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases [J]. Bioinformatics, 2014, 30(10): 1473-5.
修改评论