中文版 | English
题名

热带爪蛙合子基因组激活时期增强子鉴定及基因编辑研究

其他题名
IDENTIFICATION OF XENOPUS TROPICALIS ENHANCERS DURING ZYGOTIC GENOME ACTIVATION AND EXPANDING GENOME EDITING TOOLS IN XENOPUS TROPICALIS
姓名
姓名拼音
SHI Zhaoying
学号
11849485
学位类型
博士
学位专业
0710 生物学
学科门类/专业学位类别
07 理学
导师
陈永龙
导师单位
生物系
论文答辩日期
2022-10-23
论文提交日期
2022-12-23
学位授予单位
哈尔滨工业大学
学位授予地点
哈尔滨
摘要

多细胞生物的细胞异质性源于基因的时空差异化表达,基因的表达主要由顺式作用元件和反式作用因子共同调控。动物胚胎发育早期,在合子基因组激活之前,胚胎发育完全依赖于母源物质。合子基因组激活是胚胎发育过程中基因表达从无到有的过程,这时基因的激活依赖于增强子与反式作用因子的调控,合子基因组激活是研究体内基因表达调控机制的理想模型,鉴定合子基因组激活时期全基因组增强子并探索合子基因组激活过程中相关的基因调控机制将为探索先天性疾病的发病机制提供帮助。然而,受到试验材料的限制,使用已广泛应用于全基因组鉴定增强子的STARR-seq技术鉴定胚胎时期全基因组增强子至今未有报道。热带爪蛙大量的胚胎数量且与人类遗传距离相对较近,这为鉴定合子基因组激活时期全基因组增强子提供理想的动物模型。

为了系统性鉴定合子基因组激活时期增强子,本研究采用自主开发了基于特异性RNA捕获的PcStarr-seq技术用于热带爪蛙合子基因组激活时期全基因组增强子鉴定,并分析了鉴定增强子在基因组上的分布。发现鉴定的增强子在启动子区域富集,增强子的长度越长其活性越强,强度越强的增强子对应临近基因的表达量也越强。在启动子区域的增强子被称为E-promoter,本研究发现E-promoter所对应基因主要富集到多个生物体的基础代谢活动中,说明E-promoter对生物体的基本存活至关重要。

本研究进一步对热带爪蛙合子基因组激活时期鉴定增强子的表观遗传特征进行分析。基于刀豆素A磁珠捕获细胞核的染色质开放性检测方法(CANTAC-seq技术),本研究构建了热带爪蛙ZGA时期染色质开放性图谱,发现染色质开放性区域在启动子区域富集,位于开放性区域的增强子活性强于非开放性区域的增强子,开放性区域增强子与激活性组蛋白修饰以及相关蛋白高度富集,与某些抑制性组蛋白修饰及相关蛋白微弱富集。本研究通过组蛋白修饰类型将染色质开放性区域增强子分为11类,其中4类增强子富集形态发生素的效应因子,且存在1类双功能增强子(富集H3K4me1H3K27me3),发现增强子活性与富集母源因子的强度呈正相关。同时中心区域富集活性组蛋白修饰的增强子活性低,两端富集活性组蛋白修饰的增强子活性高。此外,本研究在开放区域增强子中筛选出343个超级增强子,这些超级增强子富集多个胚胎发育过程中,提示超级增强子参与热带爪蛙ZGA时期重要基因转录调控。

物理距离的靠近是增强子与靶基因互作基本模式,本研究通过全基因组互作图谱筛选增强子的靶基因,并分析了它们的调控关系。本研究使用Hi-C技术绘制了热带爪蛙早期胚胎全基因组互作图谱,发现染色质高级结构TAD随着合子基因组激活而不断建立,通过杂交胚胎获得热带爪蛙合子基因组激活时期新生RNA表达谱。通过增强子从全基因组互作网络中筛选出靶基因信息,发现增强子数目与靶基因表达呈正相关,增强子的活性可能随着靶基因数目增加而被稀释。通过基因集表达水平与增强子活性、增强子-启动子交互强度以及组蛋白修饰类型进行幂函数拟合,本研究发现基因表达水平与增强子活性、增强子-启动子交互强度存在非线性关系。

基因编辑方法是验证体内增强子活性的重要工具,然而目前在热带爪蛙中仅报道SpCas9可高效进行基因编辑,这限制了验证体内增强子活性时编辑位点的选择。因此,本研究探索了可用于热带爪蛙基因编辑的技术,通过检测目前已报道的8CRISPR核酸酶,发现SaCas9KKH SaCas9LbCas12a/crRNA在热带爪蛙中有高效的基因编辑效率,KKH SaCas9LbCas12a/crRNA可以在热带爪蛙中实现增强子DNA片段删除。这些高效的编辑酶都将为在热带爪蛙中进行增强子体内验证提供助力。

综上所述,本论文首次在热带爪蛙早期胚胎中建立了改进的STARR-seq功能性高通量增强子技术—PcStarr-seq技术,开发了热带爪蛙早期胚胎开放染色质检测的CANTAC-seq技术,绘制了热带爪蛙早期胚胎全基因组互作图谱,提出了基因表达与增强子活性、增强子-启动子交互强度的非线性模型,拓宽了热带爪蛙基因组编辑核酸酶的选择。这些方法及数据为在热带爪蛙中研究基因组功能奠定了坚实的基础。

其他摘要

The identity of various cells in multicellular organisms is determined by precise spatial and temporal gene expression, which is mainly regulated by cis-regulatory elements and trans-acting factors. The very early stages of embryonic development in animals are completely dependent on the maternal materials before zygotic genome activation (ZGA). ZGA is the de novo gene transcription of the zygotic genome that is initially transcriptionally silent after fertilization. ZGA is regulated by enhancers and trans-acting factors and is an ideal model to study the regulatory mechanisms of gene expression in vivo. Systematic identification of genome-wide active enhancers during ZGA and mechanistic analysis of ZGA initiation would contribute to the understanding of the pathogenesis of congenital diseases. Unfortunately, to date, due to limited embryonic materials, it is hardly possible to use the Self-Transcribing Active Regulatory Region Sequencing (STARR-seq) method, a massively parallel reporter assay to identify transcriptional enhancers directly based on their activity in entire genomes initially developed for Drosophila cell lines, for high-throughput functional screening of enhancer activities during ZGA in any model organisms. With large number of embryos and relatively close genetic distance to humans, Xenopus tropicalis provide an ideal animal model for identifying genome-wide enhancers during ZGA.

To identify genome-wide enhancers during ZGA of Xenopus tropicalis, I developed an improved version of the STARR-seq, designated as the Probe-capturing STARR-seq (PcStarr-seq), which can specifically capture RNAs transcribed from injected reporter constructs, and analyzed the genomic distribution of the identified enhancers. The obtained data show that the identified enhancers are enriched in the promoter regions. Longer enhancers have stronger activities, which is correlated with higher expression levels of adjacent endogenous genes. The enhancer in the promoter region is called E-promoter. The genes corresponding to E-promoters identified in this study are mainly enriched in the basal metabolism, suggesting that E-promoters are essential for survival of organisms.

Next, I analyzed the epigenetic characteristics of the identified enhancers during Xenopus tropicalis ZGA. Using the Concanavalin A beads-based Nucleus capture followed by Tn5-mediated Accessible Chromatin assay with sequencing (CANTAC-seq) newly developed for Xenopus tropicalis early stage embryos, I found that open chromatins were enriched in promoter regions during ZGA. Enhancers located in open chromatins were more active than those in non-open chromatins and were highly enriched with activating histone marks. the open chromatin enhancers were categorized into 11 groups by histone marks. Among them, 4 groups were enriched in morphogen effectors and 1 group showed bivalent character (enriched with both H3K4me1 and H3K27me3). In general, the enhancer activity was positively correlated with the enrichment of maternal factors. The enhancers with active histone marks enriched in the central region have lower activities, while with active histone marks enriched in the flanking margins have higher activities. In addition, 343 super-enhancers were screened from the open region enhancers. These super-enhancers related genes were enriched in multiple embryonic development biological processes suggested that super-enhancers are involved in the transcriptional regulation of important genes during the ZGA of Xenopus tropicalis.

Physical proximity is the basic interaction mode between enhancers and target genes. Using the Hi-C data, I screened the target genes of enhancers through the genome-wide interaction mapping and analyzed the relatedness between the enhancer and its target gene. The topologically associating domain chromatin (TAD) structure was continuously established during Xenopus tropicalis ZGA. RNA-seq analysis with hybrid embryos derived from Xenopus laevis eggs fertilized by Xenopus tropicalis sperm detected de novo RNA expression profiles of Xenopus tropicalis genome during hybrid ZGA. With target genes of enhancers screened out from the at genome-wide chromatin contacts, I found that enhancer quantity is positively correlated with target gene expression levels and the activity of enhancers might be diluted with the increase of target genes. Through power function fitting analysis, a nonlinear model was revealed that can explain the relatedness among gene expression level, enhancer activities, enhancer-promoter interaction strength, and histone marks.

Genome editing is a powerful tool for validating enhancer function in vivo. Currently, only SpCas9 is widely used in Xenopus tropicalis, which limits the selection of editing sites when validating enhancer activity in vivo. In this study, I evaluated the genome editing efficiency of 8 different Cas nucleases in Xenopus tropicalis and found that SaCas9, KKH SaCas9, and LbCas12a/crRNA RNP complexes were highly effective in G0 embryos. I also found that multi-gRNA of KKH SaCas9, and paired crRNAs of LbCas12a/crRNA RNP complexes can efficiently induce enhancer DNA fragment deletion in Xenopus tropicalis embryos. These Cas nucleases will facilitate the in vivo enhancer validation of Xenopus tropicalis.

In summary, in this study, I established the PcStarr-seq method and identified whole-genome active enhancers during Xenopus tropicalis ZGA. Integrating the chromatin accessibility data, histone mark data, and Hi-C data, I proposed a nonlinear model to explain the relatedness among gene expression, enhancer activity, and enhancer-promoter interaction strength. Last but not least, I expended the genome editing scope of CRISPR/Cas in Xenopus tropicalis embryos. These data and methods provide a solid foundation for further studying genome function in Xenopus tropicalis.

关键词
其他关键词
语种
中文
培养类别
联合培养
入学年份
2018
学位授予年份
2022-12
参考文献列表

[1] ASAMI M, LAM B Y, MA M K, et al. Human embryonic genome activation initiates at the one-cell stage [J]. Cell stem cell, 2022, 29(2): 209-16. e4.
[2] LEE M T, BONNEAU A R, TAKACS C M, et al. Nanog, Pou5f1 and SoxB1 activate zygotic gene expression during the maternal-to-zygotic transition [J]. Nature, 2013, 503(7476): 360-4.
[3] MEIER M, GRANT J, DOWDLE A, et al. Cohesin facilitates zygotic genome activation in zebrafish [J]. Development, 2018, 145(1): dev156521.
[4] CHAN S H, TANG Y, MIAO L, et al. Brd4 and P300 confer transcriptional competency during zygotic genome activation [J]. Developmental cell, 2019, 49(6): 867-81. e8.
[5] HAMM D C, HARRISON M M. Regulatory principles governing the maternal-to-zygotic transition: insights from Drosophila melanogaster [J]. Royal society open biology, 2018, 8(12): 180183.
[6] EDGAR B A, KIEHLE C P, SCHUBIGER G. Cell cycle control by the nucleo-cytoplasmic ratio in early Drosophila development [J]. Cell, 1986, 44(2): 365-72.
[7] HARRISON M M, BOTCHAN M R, CLINE T W. Grainyhead and Zelda compete for binding to the promoters of the earliest-expressed Drosophila genes [J]. Developmental biology, 2010, 345(2): 248-55.
[8] KIMELMAN D, KIRSCHNER M, SCHERSON T. The events of the midblastula transition in Xenopus are regulated by changes in the cell cycle [J]. Cell, 1987, 48(3): 399-407.
[9] COLLART C, ALLEN G E, BRADSHAW C R, et al. Titration of four replication factors is essential for the Xenopus laevis midblastula transition [J]. Science, 2013, 341(6148): 893-6.
[10] DI TALIA S, SHE R, BLYTHE S A, et al. Posttranslational control of Cdc25 degradation terminates Drosophila’s early cell-cycle program [J]. Current biology, 2013, 23(2): 127-32.
[11] JEVTIĆ P, LEVY D L. Both nuclear size and DNA amount contribute to midblastula transition timing in Xenopus laevis [J]. Scientific reports, 2017, 7(1): 1-9.
[12] AMODEO A A, JUKAM D, STRAIGHT A F, et al. Histone titration against the genome sets the DNA-to-cytoplasm threshold for the Xenopus midblastula transition [J]. Proceedings of the national academy of sciences, 2015, 112(10): E1086-E95.
[13] DUNICAN D S, RUZOV A, HACKETT J A, et al. xDnmt1 regulates transcriptional silencing in pre-MBT Xenopus embryos independently of its catalytic function [J]. 2008.
[14] CHEN H, EINSTEIN L C, LITTLE S C, et al. Spatiotemporal patterning of zygotic genome activation in a model vertebrate embryo [J]. Developmental cell, 2019, 49(6): 852-66. e7.
[15] JUKAM D, KAPOOR R R, STRAIGHT A F, et al. The DNA-to-cytoplasm ratio broadly activates zygotic gene expression in Xenopus [J]. Current biology, 2021, 31(19): 4269-81. e8.
[16] NIAKAN K K, HAN J, PEDERSEN R A, et al. Human pre-implantation embryo development [J]. Development, 2012, 139(5): 829-41.
[17] AIKEN C E, SWOBODA P P, SKEPPER J N, et al. The direct measurement of embryogenic volume and nucleo-cytoplasmic ratio during mouse pre-implantation development [J]. Reproduction, 2004, 128(5): 527-35.
[18] DU Z-Q, LIANG H, LIU X-M, et al. Single cell RNA-seq reveals genes vital to in vitro fertilized embryos and parthenotes in pigs [J]. Scientific reports, 2021, 11(1): 1-13.
[19] LI E, BEARD C, JAENISCH R. Role for DNA methylation in genomic imprinting [J]. Nature, 1993, 366(6453): 362-5.
[20] PANNING B. X-chromosome inactivation: the molecular basis of silencing [J]. Journal of biology, 2008, 7(8): 1-4.
[21] GKOUNTELA S, ZHANG K X, SHAFIQ T A, et al. DNA demethylation dynamics in the human prenatal germline [J]. Cell, 2015, 161(6): 1425-36.
[22] SHEARSTONE J R, POP R, BOCK C, et al. Global DNA demethylation during mouse erythropoiesis in vivo [J]. Science, 2011, 334(6057): 799-802.
[23] GUO H, ZHU P, YAN L, et al. The DNA methylation landscape of human early embryos [J]. Nature, 2014, 511(7511): 606-10.
[24] SHEN L, INOUE A, HE J, et al. Tet3 and DNA replication mediate demethylation of both the maternal and paternal genomes in mouse zygotes [J]. Cell stem cell, 2014, 15(4): 459-71.
[25] BOGDANOVIĆ O, LONG S W, VAN HEERINGEN S J, et al. Temporal uncoupling of the DNA methylome and transcriptional repression during embryogenesis [J]. Genome research, 2011, 21(8): 1313-27.
[26] JIANG L, ZHANG J, WANG J-J, et al. Sperm, but not oocyte, DNA methylome is inherited by zebrafish early embryos [J]. Cell, 2013, 153(4): 773-84.
[27] POTOK M E, NIX D A, PARNELL T J, et al. Reprogramming the maternal zebrafish genome after fertilization to match the paternal methylation pattern [J]. Cell, 2013, 153(4): 759-72.
[28] KELLY W G. Transgenerational epigenetics in the germline cycle of Caenorhabditis elegans [J]. Epigenetics & chromatin, 2014, 7(1): 1-17.
[29] TAKAYAMA S, DHAHBI J, ROBERTS A, et al. Genome methylation in D. melanogaster is found at specific short motifs and is independent of DNMT2 activity [J]. Genome research, 2014, 24(5): 821-30.
[30] LI X-Y, HARRISON M M, VILLALTA J E, et al. Establishment of regions of genomic activity during the Drosophila maternal to zygotic transition [J]. Elife, 2014, 3: e03737.
[31] SATO Y, HILBERT L, ODA H, et al. Histone H3K27 acetylation precedes active transcription during zebrafish zygotic genome activation as revealed by live-cell analysis [J]. Development, 2019, 146(19): dev179127.
[32] GUPTA R, WILLS A, UCAR D, et al. Developmental enhancers are marked independently of zygotic Nodal signals in Xenopus [J]. Developmental biology, 2014, 395(1): 38-49.
[33] DAHL J A, JUNG I, AANES H, et al. Broad histone H3K4me3 domains in mouse oocytes modulate maternal-to-zygotic transition [J]. Nature, 2016, 537(7621): 548-52.
[34] XIA W, XU J, YU G, et al. Resetting histone modifications during human parental-to-zygotic transition [J]. Science, 2019, 365(6451): 353-60.
[35] EISSENBERG J C, SHILATIFARD A. Histone H3 lysine 4 (H3K4) methylation in development and differentiation [J]. Developmental biology, 2010, 339(2): 240-9.
[36] CHEN K, JOHNSTON J, SHAO W, et al. A global change in RNA polymerase II pausing during the Drosophila midblastula transition [J]. Elife, 2013, 2: e00861.
[37] LINDEMAN L C, ANDERSEN I S, REINER A H, et al. Prepatterning of developmental gene expression by modified histones before zygotic genome activation [J]. Developmental cell, 2011, 21(6): 993-1004.
[38] HONTELEZ S, VAN KRUIJSBERGEN I, GEORGIOU G, et al. Embryonic transcription is controlled by maternally defined chromatin state [J]. Nature communications, 2015, 6(1): 1-13.
[39] AOSHIMA K, INOUE E, SAWA H, et al. Paternal H3K4 methylation is required for minor zygotic gene activation and early mouse embryonic development [J]. EMBO reports, 2015, 16(7): 803-12.
[40] ZENK F, LOESER E, SCHIAVO R, et al. Germ line–inherited H3K27me3 restricts enhancer function during maternal-to-zygotic transition [J]. Science, 2017, 357(6347): 212-6.
[41] GAYDOS L J, WANG W, STROME S. H3K27me and PRC2 transmit a memory of repression across generations and during development [J]. Science, 2014, 345(6203): 1515-8.
[42] VASTENHOUW N L, ZHANG Y, WOODS I G, et al. Chromatin signature of embryonic pluripotency is established during genome activation [J]. Nature, 2010, 464(7290): 922-6.
[43] BERNSTEIN B E, MIKKELSEN T S, XIE X, et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells [J]. Cell, 2006, 125(2): 315-26.
[44] XU R, LI S, WU Q, et al. Stage-specific H3K9me3 occupancy ensures retrotransposon silencing in human pre-implantation embryos [J]. Cell stem cell, 2022, 29(7): 1051-66. e8.
[45] LIANG H-L, NIEN C-Y, LIU H-Y, et al. The zinc-finger protein Zelda is a key activator of the early zygotic genome in Drosophila [J]. Nature, 2008, 456(7220): 400-3.
[46] NIEN C-Y, LIANG H-L, BUTCHER S, et al. Temporal coordination of gene networks by Zelda in the early Drosophila embryo [J]. PLoS genetics, 2011, 7(10): e1002339.
[47] LEICHSENRING M, MAES J, MÖSSNER R, et al. Pou5f1 transcription factor controls zygotic gene activation in vertebrates [J]. Science, 2013, 341(6149): 1005-9.
[48] MIAO L, TANG Y, BONNEAU A R, et al. The landscape of pioneer factor activity reveals the mechanisms of chromatin reprogramming and genome activation [J]. Molecular cell, 2022, 82(5): 986-1002. e9.
[49] GENTSCH G E, SPRUCE T, OWENS N D, et al. Maternal pluripotency factors initiate extensive chromatin remodelling to predefine first response to inductive signals [J]. Nature communications, 2019, 10(1): 1-22.
[50] AFOUDA B A, NAKAMURA Y, SHAW S, et al. Foxh1/Nodal defines context-specific direct maternal Wnt/β-catenin target gene regulation in early development [J]. Iscience, 2020, 23(7): 101314.
[51] LU F, LIU Y, INOUE A, et al. Establishing chromatin regulatory landscape during mouse preimplantation development [J]. Cell, 2016, 165(6): 1375-88.
[52] GAO L, WU K, LIU Z, et al. Chromatin accessibility landscape in human early embryos and its association with evolution [J]. Cell, 2018, 173(1): 248-59. e15.
[53] LE BIN G C, MUÑOZ-DESCALZO S, KUROWSKI A, et al. Oct4 is required for lineage priming in the developing inner cell mass of the mouse blastocyst [J]. Development, 2014, 141(5): 1001-10.
[54] DE IACO A, PLANET E, COLUCCIO A, et al. DUX-family transcription factors regulate zygotic genome activation in placental mammals [J]. Nature genetics, 2017, 49(6): 941-5.
[55] HENDRICKSON P G, DORÁIS J A, GROW E J, et al. Conserved roles of mouse DUX and human DUX4 in activating cleavage-stage genes and MERVL/HERVL retrotransposons [J]. Nature genetics, 2017, 49(6): 925-34.
[56] WHIDDON J L, LANGFORD A T, WONG C-J, et al. Conservation and innovation in the DUX4-family gene network [J]. Nature genetics, 2017, 49(6): 935-40.
[57] CHEN Z, ZHANG Y. Loss of DUX causes minor defects in zygotic genome activation and is compatible with mouse development [J]. Nature genetics, 2019, 51(6): 947-51.
[58] LIU Y, LU X, YE M, et al. Efficient silencing of the multicopy DUX4 gene by ABE-mediated start codon mutation in human embryos [J]. Journal of genetics and genomics= Yi chuan xue bao, 2022: S1673-8527 (22) 00050-9.
[59] LIEBERMAN-AIDEN E, VAN BERKUM N L, WILLIAMS L, et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome [J]. Science, 2009, 326(5950): 289-93.
[60] DE LAAT W, DUBOULE D. Topology of mammalian developmental enhancers and their regulatory landscapes [J]. Nature, 2013, 502(7472): 499-506.
[61] DIXON J R, SELVARAJ S, YUE F, et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions [J]. Nature, 2012, 485(7398): 376-80.
[62] HOU C, LI L, QIN Z S, et al. Gene density, transcription, and insulators contribute to the partition of the Drosophila genome into physical domains [J]. Molecular cell, 2012, 48(3): 471-84.
[63] HUG C B, GRIMALDI A G, KRUSE K, et al. Chromatin architecture emerges during zygotic genome activation independent of transcription [J]. Cell, 2017, 169(2): 216-28. e19.
[64] KE Y, XU Y, CHEN X, et al. 3D chromatin structures of mature gametes and structural reprogramming during mammalian embryogenesis [J]. Cell, 2017, 170(2): 367-81. e20.
[65] DU Z, ZHENG H, HUANG B, et al. Allelic reprogramming of 3D chromatin architecture during early mammalian development [J]. Nature, 2017, 547(7662): 232-5.
[66] NIU L, SHEN W, SHI Z, et al. Three-dimensional folding dynamics of the Xenopus tropicalis genome [J]. Nature genetics, 2021, 53(7): 1075-87.
[67] KAAIJ L J, VAN DER WEIDE R H, KETTING R F, et al. Systemic loss and gain of chromatin architecture throughout zebrafish development [J]. Cell reports, 2018, 24(1): 1-10. e4.
[68] CHEN X, KE Y, WU K, et al. Key role for CTCF in establishing chromatin structure in human embryos [J]. Nature, 2019, 576(7786): 306-10.
[69] MAZID M, WARD C, LUO Z, et al. Rolling back human pluripotent stem cells to an eight-cell embryo-like stage [J]. Nature, 2022, 605(7909): 315-24.
[70] TAUBENSCHMID-STOWERS J, ROSTOVSKAYA M, SANTOS F, et al. 8C-like cells capture the human zygotic genome activation program in vitro [J]. Cell stem cell, 2022, 29(3): 449-59. e6.
[71] TAFT R J, PHEASANT M, MATTICK J S. The relationship between non‐protein‐coding DNA and eukaryotic complexity [J]. Bioessays, 2007, 29(3): 288-99.
[72] HOWE K, CLARK M D, TORROJA C F, et al. The zebrafish reference genome sequence and its relationship to the human genome [J]. Nature, 2013, 496(7446): 498-503.
[73] HELLSTEN U, HARLAND R M, GILCHRIST M J, et al. The genome of the Western clawed frog Xenopus tropicalis [J]. Science, 2010, 328(5978): 633-6.
[74] BANERJI J, RUSCONI S, SCHAFFNER W. Expression of a β-globin gene is enhanced by remote SV40 DNA sequences [J]. Cell, 1981, 27(2): 299-308.
[75] MOREAU P, HEN R, WASYLYK B, et al. The SV40 72 base repair repeat has a striking effect on gene expression both in SV40 and other chimeric recombinants [J]. Nucleic acids research, 1981, 9(22): 6047-68.
[76] POTT S, LIEB J D. What are super-enhancers? [J]. Nature genetics, 2015, 47(1): 8-12.
[77] WANG X, CAIRNS M J, YAN J. Super-enhancers in transcriptional regulation and genome organization [J]. Nucleic acids research, 2019, 47(22): 11481-96.
[78] FURLONG E E, LEVINE M. Developmental enhancers and chromosome topology [J]. Science, 2018, 361(6409): 1341-5.
[79] ROLLINS R A, MORCILLO P, DORSETT D. Nipped-B, a Drosophila homologue of chromosomal adherins, participates in activation by remote enhancers in the cut and Ultrabithorax genes [J]. Genetics, 1999, 152(2): 577-93.
[80] GAO D, ZHU B, CAO X, et al. Roles of NIPBL in maintenance of genome stability; proceedings of the Seminars in cell & developmental biology, F, 2019 [C]. Elsevier.
[81] SHI Z, GAO H, BAI X-C, et al. Cryo-EM structure of the human cohesin-NIPBL-DNA complex [J]. Science, 2020, 368(6498): 1454-9.
[82] LUPIÁÑEZ D G, KRAFT K, HEINRICH V, et al. Disruptions of topological chromatin domains cause pathogenic rewiring of gene-enhancer interactions [J]. Cell, 2015, 161(5): 1012-25.
[83] KAWAKAMI K, ABE G, ASADA T, et al. zTrap: zebrafish gene trap and enhancer trap database [J]. BMC developmental biology, 2010, 10(1): 1-10.
[84] BRONCHAIN O J, HARTLEY K O, AMAYA E. A gene trap approach in Xenopus [J]. Current biology, 1999, 9(20): 1195-S1.
[85] WONG E S, ZHENG D, TAN S Z, et al. Deep conservation of the enhancer regulatory code in animals [J]. Science, 2020, 370(6517): eaax8137.
[86] BEER M A, SHIGAKI D, HAUNGFU D. Enhancer predictions and genome-wide regulatory circuits [J]. Annual review of genomics and human genetics, 2020, 21: 37.
[87] MIN X, LU F, LI C. Sequence-based deep learning frameworks on enhancer-promoter interactions prediction [J]. Current pharmaceutical design, 2021, 27(15): 1847-55.
[88] MINNOYE L, TASKIRAN I I, MAUDUIT D, et al. Cross-species analysis of enhancer logic using deep learning [J]. Genome research, 2020, 30(12): 1815-34.
[89] ARNOLD C D, GERLACH D, STELZER C, et al. Genome-wide quantitative enhancer activity maps identified by STARR-seq [J]. Science, 2013, 339(6123): 1074-7.
[90] KHERADPOUR P, ERNST J, MELNIKOV A, et al. Systematic dissection of regulatory motifs in 2000 predicted human enhancers using a massively parallel reporter assay [J]. Genome research, 2013, 23(5): 800-11.
[91] DICKEL D E, ZHU Y, NORD A S, et al. Function-based identification of mammalian enhancers using site-specific integration [J]. Nature methods, 2014, 11(5): 566-71.
[92] MURTHA M, TOKCAER-KESKIN Z, TANG Z, et al. FIREWACh: high-throughput functional detection of transcriptional regulatory modules in mammalian cells [J]. Nature methods, 2014, 11(5): 559-65.
[93] LIU Y, YU S, DHIMAN V K, et al. Functional assessment of human enhancer activities using whole-genome STARR-sequencing [J]. Genome biology, 2017, 18(1): 1-13.
[94] FLAMANT F, ZEKRI Y, GUYOT R. Functional definition of thyroid hormone response elements based on a synthetic STARR-seq screen [J]. Endocrinology, 2022, 163(8): bqac084.
[95] BARAKAT T S, HALBRITTER F, ZHANG M, et al. Functional dissection of the enhancer repertoire in human embryonic stem cells [J]. Cell stem cell, 2018, 23(2): 276-88. e8.
[96] CHAUDHRI V K, DIENGER-STAMBAUGH K, WU Z, et al. Charting the cis-regulome of activated B cells by coupling structural and functional genomics [J]. Nature immunology, 2020, 21(2): 210-20.
[97] GLASER L V, STEIGER M, FUCHS A, et al. Assessing genome-wide dynamic changes in enhancer activity during early mESC differentiation by FAIRE-STARR-seq [J]. Nucleic acids research, 2021, 49(21): 12178-95.
[98] PENG T, ZHAI Y, ATLASI Y, et al. STARR-seq identifies active, chromatin-masked, and dormant enhancers in pluripotent mouse embryonic stem cells [J]. Genome biology, 2020, 21(1): 1-27.
[99] SUN J, HE N, NIU L, et al. Global quantitative mapping of enhancers in rice by STARR-seq [J]. Genomics, proteomics & bioinformatics, 2019, 17(2): 140-53.
[100] JORES T, TONNIES J, DORRITY M W, et al. Identification of plant enhancers and their constituent elements by STARR-seq in tobacco leaves [J]. The plant cell, 2020, 32(7): 2120-31.
[101] LI J, SHOU J, GUO Y, et al. Efficient inversions and duplications of mammalian regulatory DNA elements and gene clusters by CRISPR/Cas9 [J]. Journal of molecular cell biology, 2015, 7(4): 284-98.
[102] CUNNINGHAM T J, LANCMAN J J, BERENGUER M, et al. Genomic knockout of two presumed forelimb Tbx5 enhancers reveals they are nonessential for limb development [J]. Cell reports, 2018, 23(11): 3146-51.
[103] THAKORE P I, D'IPPOLITO A M, SONG L, et al. Highly specific epigenome editing by CRISPR-Cas9 repressors for silencing of distal regulatory elements [J]. Nature methods, 2015, 12(12): 1143-9.
[104] FULCO C P, NASSER J, JONES T R, et al. Activity-by-contact model of enhancer–promoter regulation from thousands of CRISPR perturbations [J]. Nature genetics, 2019, 51(12): 1664-9.
[105] OGINO H, MCCONNELL W B, GRAINGER R M. Highly efficient transgenesis in Xenopus tropicalis using I-SceI meganuclease [J]. Mechanisms of development, 2006, 123(2): 103-13.
[106] CANNATELLA D C, TRUEB L. Evolution of pipoid frogs: intergeneric relationships of the aquatic frog family Pipidae (Anura) [J]. Zoological journal of the linnean society, 1988, 94(1): 1-38.
[107] SESSION A M, UNO Y, KWON T, et al. Genome evolution in the allotetraploid frog Xenopus laevis [J]. Nature, 2016, 538(7625): 336-43.
[108] BRADLEY A, ANASTASSIADIS K, AYADI A, et al. The mammalian gene function resource: the International Knockout Mouse Consortium [J]. Mammalian genome, 2012, 23(9): 580-6.
[109] YOUNG J J, CHERONE J M, DOYON Y, et al. Efficient targeted gene disruption in the soma and germ line of the frog Xenopus tropicalis using engineered zinc-finger nucleases [J]. Proceedings of the national academy of sciences, 2011, 108(17): 7052-7.
[110] WOOD A J, LO T-W, ZEITLER B, et al. Targeted genome editing across species using ZFNs and TALENs [J]. Science, 2011, 333(6040): 307.
[111] MILLER J C, TAN S, QIAO G, et al. A TALE nuclease architecture for efficient genome editing [J]. Nature biotechnology, 2011, 29(2): 143-8.
[112] LEI Y, GUO X, LIU Y, et al. Efficient targeted gene disruption in Xenopus embryos using engineered transcription activator-like effector nucleases (TALENs) [J]. Proceedings of the national academy of sciences, 2012, 109(43): 17484-9.
[113] NAKAJIMA K, NAKAI Y, OKADA M, et al. Targeted gene disruption in the Xenopus tropicalis genome using designed TALE nucleases [J]. Zoological science, 2013, 30(6): 455-60.
[114] LEI Y, GUO X, DENG Y, et al. Generation of gene disruptions by transcription activator-like effector nucleases (TALENs) in Xenopus tropicalis embryos [J]. Cell & bioscience, 2013, 3(1): 1-10.
[115] NAERT T, VAN NIEUWENHUYSEN T, VLEMINCKX K. TALENs and CRISPR/Cas9 fuel genetically engineered clinically relevant Xenopus tropicalis tumor models [J]. Genesis, 2017, 55(1-2): e23005.
[116] VAN NIEUWENHUYSEN T, NAERT T, TRAN H T, et al. TALEN-mediated apc mutation in Xenopus tropicalis phenocopies familial adenomatous polyposis [J]. Oncoscience, 2015, 2(5): 555.
[117] EDWARDS N A, ZORN A M. Modeling endoderm development and disease in Xenopus [J]. Current topics in developmental biology, 2021, 145: 61-90.
[118] WATABE M, HIRAIWA A, SAKAI M, et al. Sperm MMP‐2 is indispensable for fast electrical block to polyspermy at fertilization in Xenopus tropicalis [J]. Molecular reproduction and development, 2021, 88(11): 744-57.
[119] JINEK M, CHYLINSKI K, FONFARA I, et al. A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity [J]. Science, 2012, 337(6096): 816-21.
[120] GUO X, ZHANG T, HU Z, et al. Efficient RNA/Cas9-mediated genome editing in Xenopus tropicalis [J]. Development, 2014, 141(3): 707-14.
[121] NAKAYAMA T, FISH M B, FISHER M, et al. Simple and efficient CRISPR/Cas9‐mediated targeted mutagenesis in Xenopus tropicalis [J]. Genesis, 2013, 51(12): 835-43.
[122] SHI Z, WANG F, CUI Y, et al. Heritable CRISPR/Cas9‐mediated targeted integration in Xenopus tropicalis [J]. The FASEB journal, 2015, 29(12): 4914-23.
[123] ASLAN Y, TADJUIDJE E, ZORN A M, et al. High-efficiency non-mosaic CRISPR-mediated knock-in and indel mutation in F0 Xenopus [J]. Development, 2017, 144(15): 2852-8.
[124] SHI Z, XIN H, TIAN D, et al. Modeling human point mutation diseases in Xenopus tropicalis with a modified CRISPR/Cas9 system [J]. The FASEB journal, 2019, 33(6): 6962-8.
[125] NAKAYAMA T, GRAINGER R M, CHA S W. Simple embryo injection of long single‐stranded donor templates with the CRISPR/Cas9 system leads to homology‐directed repair in Xenopus tropicalis and Xenopus laevis [J]. Genesis, 2020, 58(6): e23366.
[126] RAO S S, HUNTLEY M H, DURAND N C, et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping [J]. Cell, 2014, 159(7): 1665-80.
[127] FORTRIEDE J D, PELLS T J, CHU S, et al. Xenbase: deep integration of GEO & SRA RNA-seq and ChIP-seq data in a model organism database [J]. Nucleic acids research, 2020, 48(D1): D776-d82.
[128] LANGMEAD B, SALZBERG S L. Fast gapped-read alignment with Bowtie 2 [J]. Nature methods, 2012, 9(4): 357-9.
[129] DANECEK P, BONFIELD J K, LIDDLE J, et al. Twelve years of SAMtools and BCFtools [J]. Gigascience, 2021, 10(2): giab008.
[130] TARASOV A, VILELLA A J, CUPPEN E, et al. Sambamba: fast processing of NGS alignment formats [J]. Bioinformatics, 2015, 31(12): 2032-4.
[131] ZHANG Y, LIU T, MEYER C A, et al. Model-based analysis of ChIP-Seq (MACS) [J]. Genome biology, 2008, 9(9): 1-9.
[132] RAMÍREZ F, RYAN D P, GRÜNING B, et al. deepTools2: a next generation web server for deep-sequencing data analysis [J]. Nucleic acids research, 2016, 44(W1): W160-W5.
[133] YU G, WANG L G, HE Q Y. ChIPseeker: an R/Bioconductor package for ChIP peak annotation, comparison and visualization [J]. Bioinformatics, 2015, 31(14): 2382-3.
[134] BUTLER A, HOFFMAN P, SMIBERT P, et al. Integrating single-cell transcriptomic data across different conditions, technologies, and species [J]. Nature biotechnology, 2018, 36(5): 411-20.
[135] MCLEAY R C, BAILEY T L. Motif Enrichment Analysis: a unified framework and an evaluation on ChIP data [J]. BMC Bioinformatics, 2010, 11: 165.
[136] QUINLAN A R, HALL I M. BEDTools: a flexible suite of utilities for comparing genomic features [J]. Bioinformatics, 2010, 26(6): 841-2.
[137] BARISIC D, STADLER M B, IURLARO M, et al. Mammalian ISWI and SWI/SNF selectively mediate binding of distinct transcription factors [J]. Nature, 2019, 569(7754): 136-40.
[138] DURAND N C, SHAMIM M S, MACHOL I, et al. Juicer provides a one-click system for analyzing loop-resolution Hi-C experiments [J]. Cell system, 2016, 3(1): 95-8.
[139] HOUNKPE B W, CHENOU F, DE LIMA F, et al. HRT Atlas v1.0 database: redefining human and mouse housekeeping genes and candidate reference transcripts by mining massive RNA-seq datasets [J]. Nucleic acids research, 2021, 49(D1): D947-d55.
[140] PATRO R, DUGGAL G, LOVE M I, et al. Salmon provides fast and bias-aware quantification of transcript expression [J]. Nature methods, 2017, 14(4): 417-9.
[141] SMITH T F, WATERMAN M S. Comparison of biosequences [J]. Advances in applied mathematics, 1981, 2(4): 482-9.
[142] LAWRENCE M, HUBER W, PAGES H, et al. Software for computing and annotating genomic ranges [J]. PLoS computational biology, 2013, 9(8): e1003118.
[143] ASHBURNER M, BALL C A, BLAKE J A, et al. Gene ontology: tool for the unification of biology [J]. Nature genetics, 2000, 25(1): 25-9.
[144] VANHILLE L, GRIFFON A, MAQBOOL M A, et al. High-throughput and quantitative assessment of enhancer activity in mammals by CapStarr-seq [J]. Nature communications, 2015, 6(1): 1-10.
[145] KIECKER C, NIEHRS C. A morphogen gradient of Wnt/β-catenin signalling regulates anteroposterior neural patterning in Xenopus [J]. Development, 2001,128(21):4189-201.
[146] YASUOKA Y, SUZUKI Y, TAKAHASHI S, et al. Occupancy of tissue-specific cis-regulatory modules by Otx2 and TLE/Groucho for embryonic head specification [J]. Nature communications, 2014, 5(1): 1-14.
[147] YASUOKA Y, SHINZATO C, SATOH N. The mesoderm-forming gene brachyury regulates ectoderm-endoderm demarcation in the coral Acropora digitifera [J]. Current biology, 2016, 26(21): 2885-92.
[148] TAN C C S, MAURER-STROH S, WAN Y, et al. A novel method for the capture-based purification of whole viral native RNA genomes [J]. AMB express, 2019, 9(1): 1-9.
[149] BRIGHT A R, VEENSTRA G J C. Assay for transposase-accessible chromatin-sequencing using Xenopus embryos [J]. Cold spring harbor protocols, 2019, 2019(1): pdb. prot098327.
[150] ESMAEILI M, BLYTHE S A, TOBIAS J W, et al. Chromatin accessibility and histone acetylation in the regulation of competence in early development [J]. Developmental biology, 2020, 462(1): 20-35.
[151] BRIGHT A R, VAN GENESEN S, LI Q, et al. Combinatorial transcription factor activities on open chromatin induce embryonic heterogeneity in vertebrates [J]. The EMBO journal, 2021, 40(9): e104913.
[152] JANSEN C, PARAISO K D, ZHOU J J, et al. Uncovering the mesendoderm gene regulatory network through multi-omic data integration [J]. Cell reports, 2022, 38(7): 110364.
[153] MEERS M P, BRYSON T D, HENIKOFF J G, et al. Improved CUT&RUN chromatin profiling tools [J]. Elife, 2019, 8.
[154] KAYA-OKUR H S, JANSSENS D H, HENIKOFF J G, et al. Efficient low-cost chromatin profiling with CUT&Tag [J]. Nature protocols, 2020, 15(10): 3264-83.
[155] JANSSENS D H, MEERS M P, WU S J, et al. Automated CUT&Tag profiling of chromatin heterogeneity in mixed-lineage leukemia [J]. Nature genetics, 2021, 53(11): 1586-96.
[156] SKENE P J, HENIKOFF S. An efficient targeted nuclease strategy for high-resolution mapping of DNA binding sites [J]. Elife, 2017, 6: e21856.
[157] BARTOSOVIC M, KABBE M, CASTELO-BRANCO G. Single-cell CUT&Tag profiles histone modifications and transcription factors in complex tissues [J]. Nature biotechnology, 2021, 39(7): 825-35.
[158] XU J, KIDDER B L. H4K20me3 co-localizes with activating histone modifications at transcriptionally dynamic regions in embryonic stem cells [J]. BMC genomics, 2018, 19(1): 514.
[159] CHARNEY R M, FOROUZMAND E, CHO J S, et al. Foxh1 occupies cis-regulatory modules prior to dynamic transcription factor interactions controlling the mesendoderm gene program [J]. Developmental cell, 2017, 40(6): 595-607. e4.
[160] PARAISO K D, BLITZ I L, COLEY M, et al. Endodermal maternal transcription factors establish super-enhancers during zygotic genome activation [J]. Cell reports, 2019, 27(10): 2962-77. e5.
[161] SUBTELNY A O, EICHHORN S W, CHEN G R, et al. Poly(A)-tail profiling reveals an embryonic switch in translational control [J]. Nature, 2014, 508(7494): 66-71.
[162] GENTSCH G, MONTEIRO R, SMITH J. Cooperation between T-Box factors regulates the continuous segregation of germ layers during vertebrate embryogenesis [J]. Current topics in developmental biology, 2017, 122: 117-59.
[163] LOVÉN J, HOKE H A, LIN C Y, et al. Selective inhibition of tumor oncogenes by disruption of super-enhancers [J]. Cell, 2013, 153(2): 320-34.
[164] WHYTE W A, ORLANDO D A, HNISZ D, et al. Master transcription factors and mediator establish super-enhancers at key cell identity genes [J]. Cell, 2013, 153(2): 307-19.
[165] DEKKER J, RIPPE K, DEKKER M, et al. Capturing chromosome conformation [J]. Science, 2002, 295(5558): 1306-11.
[166] LIN X, LIU Y, LIU S, et al. Nested epistasis enhancer networks for robust genome regulation [J]. Science, 2022: eabk3512.
[167] HOUNKPE B W, CHENOU F, DE LIMA F, et al. HRT Atlas v1. 0 database: redefining human and mouse housekeeping genes and candidate reference transcripts by mining massive RNA-seq datasets [J]. Nucleic acids research, 2021, 49(D1): D947-D55.
[168] ZABIDI M A, ARNOLD C D, SCHERNHUBER K, et al. Enhancer–core-promoter specificity separates developmental and housekeeping gene regulation [J]. Nature, 2015, 518(7540): 556-9.
[169] ZUIN J, ROTH G, ZHAN Y, et al. Nonlinear control of transcription through enhancer-promoter interactions [J]. Nature, 2022, 604(7906): 571-7.
[170] KORKMAZ G, LOPES R, UGALDE A P, et al. Functional genetic screens for enhancer elements in the human genome using CRISPR-Cas9 [J]. Nature biotechnology, 2016, 34(2): 192-8.
[171] HAN R, LI L, UGALDE A P, et al. Functional CRISPR screen identifies AP1-associated enhancer regulating FOXF1 to modulate oncogene-induced senescence [J]. Genome biology, 2018, 19(1): 1-13.
[172] FEI T, LI W, PENG J, et al. Deciphering essential cistromes using genome-wide CRISPR screens [J]. Proceedings of the national academy of sciences, 2019, 116(50): 25186-95.
[173] CONG L, RAN F A, COX D, et al. Multiplex genome engineering using CRISPR/Cas systems [J]. Science, 2013, 339(6121): 819-23.
[174] PICKAR-OLIVER A, GERSBACH C A. The next generation of CRISPR–Cas technologies and applications [J]. Nature reviews molecular cell biology, 2019, 20(8): 490-507.
[175] RAN F A, CONG L, YAN W X, et al. In vivo genome editing using Staphylococcus aureus Cas9 [J]. Nature, 2015, 520(7546): 186-91.
[176] HOU Z, ZHANG Y, PROPSON N E, et al. Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis [J]. Proceedings of the national academy of sciences, 2013, 110(39): 15644-9.
[177] MÜLLER M, LEE C M, GASIUNAS G, et al. Streptococcus thermophilus CRISPR-Cas9 systems enable specific editing of the human genome [J]. Molecular therapy, 2016, 24(3): 636-44.
[178] KIM E, KOO T, PARK S W, et al. In vivo genome editing with a small Cas9 orthologue derived from Campylobacter jejuni [J]. Nature communications, 2017, 8(1): 1-12.
[179] KLEINSTIVER B P, PREW M S, TSAI S Q, et al. Engineered CRISPR-Cas9 nucleases with altered PAM specificities [J]. Nature, 2015.
[180] HU J H, MILLER S M, GEURTS M H, et al. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity [J]. Nature, 2018, 556(7699): 57-63.
[181] WALTON R T, CHRISTIE K A, WHITTAKER M N, et al. Unconstrained genome targeting with near-PAMless engineered CRISPR-Cas9 variants [J]. Science, 2020, 368(6488): 290-6.
[182] KLEINSTIVER B P, PREW M S, TSAI S Q, et al. Broadening the targeting range of Staphylococcus aureus CRISPR-Cas9 by modifying PAM recognition [J]. Nature Biotechnology, 2015, 33(12): 1293-8.
[183] CHATTERJEE P, LEE J, NIP L, et al. A Cas9 with PAM recognition for adenine dinucleotides [J]. Nature communications, 2020, 11(1): 1-6.
[184] ZETSCHE B, GOOTENBERG J S, ABUDAYYEH O O, et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system [J]. Cell, 2015, 163(3): 759-71.
[185] MORENO-MATEOS M A, FERNANDEZ J P, ROUET R, et al. CRISPR-Cpf1 mediates efficient homology-directed repair and temperature-controlled genome editing [J]. Nature communications, 2017, 8(1): 1-9.
[186] LIU P, LUK K, SHIN M, et al. Enhanced Cas12a editing in mammalian cells and zebrafish [J]. Nucleic acids research, 2019, 47(8): 4169-80.
[187] STRECKER J, JONES S, KOOPAL B, et al. Engineering of CRISPR-Cas12b for human genome editing [J]. Nature communications, 2019, 10(1): 212.
[188] WIERSON W A, SIMONE B W, WAREJONCAS Z, et al. Expanding the CRISPR toolbox with ErCas12a in zebrafish and human cells [J]. The CRISPR journal, 2019, 2(6): 417-33.
[189] HAN B, ZHANG Y, ZHOU Y, et al. ErCas12a and T5exo-ErCas12a Mediate Simple and Efficient Genome Editing in Zebrafish [J]. Biology (Basel), 2022, 11(3).
[190] HARLAND R M, GRAINGER R M. Xenopus research: metamorphosed by genetics and genomics [J]. Trends in genetics, 2011, 27(12): 507-15.
[191] CHEN F, DING X, FENG Y, et al. Targeted activation of diverse CRISPR-Cas systems for mammalian genome editing via proximal CRISPR targeting [J]. Nature communications, 2017, 8(1): 1-12.
[192] BAE S, PARK J, KIM J-S. Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases [J]. Bioinformatics, 2014, 30(10): 1473-5.

所在学位评定分委会
生物系
国内图书分类号
Q341
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/416957
专题生命科学学院_生物系
推荐引用方式
GB/T 7714
石照应. 热带爪蛙合子基因组激活时期增强子鉴定及基因编辑研究[D]. 哈尔滨. 哈尔滨工业大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11849485-石照应-生物系.pdf(41346KB)学位论文--限制开放CC BY-NC-SA请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[石照应]的文章
百度学术
百度学术中相似的文章
[石照应]的文章
必应学术
必应学术中相似的文章
[石照应]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。