中文版 | English
题名

Whole transcriptome analysis reveals non-coding RNA's competing endogenous gene pairs as novel form of motifs in serous ovarian cancer

作者
通讯作者Ye, Xiufeng; Cheng, Lixin
发表日期
2022-09-01
DOI
发表期刊
ISSN
0010-4825
EISSN
1879-0534
卷号148
摘要
The non-coding RNA (ncRNA) regulation appears to be associated to the diagnosis and targeted therapy of complex diseases. Motifs of non-coding RNAs and genes in the competing endogenous RNA (ceRNA) network would probably contribute to the accurate prediction of serous ovarian carcinoma (SOC). We conducted a microarray study profiling the whole transcriptomes of eight human SOCs and eight controls and constructed a ceRNA network including mRNAs, long ncRNAs, and circular RNAs (circRNAs). Novel form of motifs (mRNA-ncRNA-mRNA) were identified from the ceRNA network and defined as non-coding RNA's competing endogenous gene pairs (ceGPs), using a proposed method denoised individualized pair analysis of gene expression (deiPAGE). 18 cricRNA's ceGPs (cceGPs) were identified from multiple cohorts and were fused as an indicator (SOC index) for SOC discrimination, which carried a high predictive capacity in independent cohorts. SOC index was negatively correlated with the CD8+/CD4+ ratio in tumour-infiltration, reflecting the migration and growth of tumour cells in ovarian cancer progression. Moreover, most of the RNAs in SOC index were experimentally validated involved in ovarian cancer development. Our results elucidate the discriminative capability of SOC index and suggest that the novel competing endogenous motifs play important roles in expression regulation and could be potential target for investigating ovarian cancer mechanism or its therapy.
关键词
相关链接[来源记录]
收录类别
语种
英语
学校署名
第一 ; 通讯
资助项目
Guangdong Basic and Applied Basic Research Foundation[2022A1515012368]
WOS研究方向
Life Sciences & Biomedicine - Other Topics ; Computer Science ; Engineering ; Mathematical & Computational Biology
WOS类目
Biology ; Computer Science, Interdisciplinary Applications ; Engineering, Biomedical ; Mathematical & Computational Biology
WOS记录号
WOS:000888192600003
出版者
ESI学科分类
COMPUTER SCIENCE
来源库
Web of Science
引用统计
被引频次[WOS]:11
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/417086
专题南方科技大学第一附属医院
作者单位
1.Southern Univ Sci & Technol, Jinan Univ, Shenzhen Peoples Hosp, Affiliated Hosp 1,Clin Med Coll 2, Shenzhen, Peoples R China
2.Chinese Univ Hong Kong, Dept Comp Sci & Engn, Hong Kong, Peoples R China
3.Univ Helsinki, Dept Pulm Med, Helsinki, Finland
4.Helsinki Univ Hosp, Helsinki, Finland
5.Karolinska Inst, Dept Med, Resp Med Unit, Stockholm, Sweden
6.Hebei Med Univ, Dept Gynecol, Hosp 4, Shijiazhuang, Hebei, Peoples R China
7.Bioland Lab Guangzhou Regenerat Med & Hlth Guangd, Guangzhou, Guangdong, Peoples R China
8.Capital Med Univ, Beijing Chaoyang Hosp, Dept Obstet & Gynecol, Beijing, Peoples R China
第一作者单位南方科技大学第一附属医院
通讯作者单位南方科技大学第一附属医院
第一作者的第一单位南方科技大学第一附属医院
推荐引用方式
GB/T 7714
Li, Haili,Zheng, Xubin,Gao, Jing,et al. Whole transcriptome analysis reveals non-coding RNA's competing endogenous gene pairs as novel form of motifs in serous ovarian cancer[J]. COMPUTERS IN BIOLOGY AND MEDICINE,2022,148.
APA
Li, Haili.,Zheng, Xubin.,Gao, Jing.,Leung, Kwong-Sak.,Wong, Man-Hon.,...&Cheng, Lixin.(2022).Whole transcriptome analysis reveals non-coding RNA's competing endogenous gene pairs as novel form of motifs in serous ovarian cancer.COMPUTERS IN BIOLOGY AND MEDICINE,148.
MLA
Li, Haili,et al."Whole transcriptome analysis reveals non-coding RNA's competing endogenous gene pairs as novel form of motifs in serous ovarian cancer".COMPUTERS IN BIOLOGY AND MEDICINE 148(2022).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Li, Haili]的文章
[Zheng, Xubin]的文章
[Gao, Jing]的文章
百度学术
百度学术中相似的文章
[Li, Haili]的文章
[Zheng, Xubin]的文章
[Gao, Jing]的文章
必应学术
必应学术中相似的文章
[Li, Haili]的文章
[Zheng, Xubin]的文章
[Gao, Jing]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。