中文版 | English
题名

Joint Semantic Deep Learning Algorithm for Object Detection under Foggy Road Conditions

作者
通讯作者Hu, Mingdi; Jing, Bingyi
发表日期
2022-12-01
DOI
发表期刊
EISSN
2227-7390
卷号10期号:23
摘要
Current mainstream deep learning methods for object detection are generally trained on high-quality datasets, which might have inferior performances under bad weather conditions. In the paper, a joint semantic deep learning algorithm is proposed to address object detection under foggy road conditions, which is constructed by embedding three attention modules and a 4-layer UNet multi-scale decoding module in the feature extraction module of the backbone network Faster RCNN. The algorithm differs from other object detection methods in that it is designed to solve low- and high-level joint tasks, including dehazing and object detection through end-to-end training. Furthermore, the location of the fog is learned by these attention modules to assist image recovery, the image quality is recovered by UNet decoding module for dehazing, and then the feature representations of the original image and the recovered image are fused and fed into the FPN (Feature Pyramid Network) module to achieve joint semantic learning. The joint semantic features are leveraged to push the subsequent network modules ability, and therefore make the proposed algorithm work better for the object detection task under foggy conditions in the real world. Moreover, this method and Faster RCNN have the same testing time due to the weight sharing in the feature extraction module. Extensive experiments confirm that the average accuracy of our algorithm outperforms the typical object detection algorithms and the state-of-the-art joint low- and high-level tasks algorithms for the object detection of seven kinds of objects on road traffics under normal weather or foggy conditions.
关键词
相关链接[来源记录]
收录类别
语种
英语
学校署名
通讯
资助项目
[62071378] ; [2022KW-04] ; [21XJZZ0072]
WOS研究方向
Mathematics
WOS类目
Mathematics
WOS记录号
WOS:000896205400001
出版者
来源库
Web of Science
引用统计
被引频次[WOS]:5
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/417091
专题理学院_统计与数据科学系
作者单位
1.Xian Univ Posts & Telecommun, Sch Commun & Informat Engn, Changan West St, Xian 710121, Peoples R China
2.Southern Univ Sci & Technol, Dept Stat & Data Sci, 1088 Xueyuan Ave, Shenzhen 518055, Peoples R China
通讯作者单位统计与数据科学系
推荐引用方式
GB/T 7714
Hu, Mingdi,Li, Yixuan,Fan, Jiulun,et al. Joint Semantic Deep Learning Algorithm for Object Detection under Foggy Road Conditions[J]. MATHEMATICS,2022,10(23).
APA
Hu, Mingdi,Li, Yixuan,Fan, Jiulun,&Jing, Bingyi.(2022).Joint Semantic Deep Learning Algorithm for Object Detection under Foggy Road Conditions.MATHEMATICS,10(23).
MLA
Hu, Mingdi,et al."Joint Semantic Deep Learning Algorithm for Object Detection under Foggy Road Conditions".MATHEMATICS 10.23(2022).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Hu, Mingdi]的文章
[Li, Yixuan]的文章
[Fan, Jiulun]的文章
百度学术
百度学术中相似的文章
[Hu, Mingdi]的文章
[Li, Yixuan]的文章
[Fan, Jiulun]的文章
必应学术
必应学术中相似的文章
[Hu, Mingdi]的文章
[Li, Yixuan]的文章
[Fan, Jiulun]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。