中文版 | English
题名

Dissecting Complex Traits Using Omics Data: A Review on the Linear Mixed Models and Their Application in GWAS

作者
通讯作者Jin, Wenfei; Xu, Haiming
发表日期
2022-12-01
DOI
发表期刊
EISSN
2223-7747
卷号11期号:23
摘要
Genome-wide association study (GWAS) is the most popular approach to dissecting complex traits in plants, humans, and animals. Numerous methods and tools have been proposed to discover the causal variants for GWAS data analysis. Among them, linear mixed models (LMMs) are widely used statistical methods for regulating confounding factors, including population structure, resulting in increased computational proficiency and statistical power in GWAS studies. Recently more attention has been paid to pleiotropy, multi-trait, gene-gene interaction, gene-environment interaction, and multi-locus methods with the growing availability of large-scale GWAS data and relevant phenotype samples. In this review, we have demonstrated all possible LMMs-based methods available in the literature for GWAS. We briefly discuss the different LMM methods, software packages, and available open-source applications in GWAS. Then, we include the advantages and weaknesses of the LMMs in GWAS. Finally, we discuss the future perspective and conclusion. The present review paper would be helpful to the researchers for selecting appropriate LMM models and methods quickly for GWAS data analysis and would benefit the scientific society.
关键词
相关链接[来源记录]
收录类别
语种
英语
学校署名
通讯
WOS研究方向
Plant Sciences
WOS类目
Plant Sciences
WOS记录号
WOS:000896118500001
出版者
来源库
Web of Science
引用统计
被引频次[WOS]:4
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/417100
专题生命科学学院_生物系
生命科学学院
作者单位
1.Zhejiang Univ, Inst Bioinformat, Hangzhou 310058, Peoples R China
2.Southern Univ Sci & Technol, Sch Life Sci, Dept Biol, Shenzhen 518055, Peoples R China
3.Univ Alabama Birmingham, Dept Biostat, Birmingham, AL 35294 USA
第一作者单位生物系;  生命科学学院
通讯作者单位生物系;  生命科学学院
推荐引用方式
GB/T 7714
Alamin, Md.,Sultana, Most. Humaira,Lou, Xiangyang,et al. Dissecting Complex Traits Using Omics Data: A Review on the Linear Mixed Models and Their Application in GWAS[J]. PLANTS-BASEL,2022,11(23).
APA
Alamin, Md.,Sultana, Most. Humaira,Lou, Xiangyang,Jin, Wenfei,&Xu, Haiming.(2022).Dissecting Complex Traits Using Omics Data: A Review on the Linear Mixed Models and Their Application in GWAS.PLANTS-BASEL,11(23).
MLA
Alamin, Md.,et al."Dissecting Complex Traits Using Omics Data: A Review on the Linear Mixed Models and Their Application in GWAS".PLANTS-BASEL 11.23(2022).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Alamin, Md.]的文章
[Sultana, Most. Humaira]的文章
[Lou, Xiangyang]的文章
百度学术
百度学术中相似的文章
[Alamin, Md.]的文章
[Sultana, Most. Humaira]的文章
[Lou, Xiangyang]的文章
必应学术
必应学术中相似的文章
[Alamin, Md.]的文章
[Sultana, Most. Humaira]的文章
[Lou, Xiangyang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。