题名 | Dissecting Complex Traits Using Omics Data: A Review on the Linear Mixed Models and Their Application in GWAS |
作者 | |
通讯作者 | Jin, Wenfei; Xu, Haiming |
发表日期 | 2022-12-01
|
DOI | |
发表期刊 | |
EISSN | 2223-7747
|
卷号 | 11期号:23 |
摘要 | Genome-wide association study (GWAS) is the most popular approach to dissecting complex traits in plants, humans, and animals. Numerous methods and tools have been proposed to discover the causal variants for GWAS data analysis. Among them, linear mixed models (LMMs) are widely used statistical methods for regulating confounding factors, including population structure, resulting in increased computational proficiency and statistical power in GWAS studies. Recently more attention has been paid to pleiotropy, multi-trait, gene-gene interaction, gene-environment interaction, and multi-locus methods with the growing availability of large-scale GWAS data and relevant phenotype samples. In this review, we have demonstrated all possible LMMs-based methods available in the literature for GWAS. We briefly discuss the different LMM methods, software packages, and available open-source applications in GWAS. Then, we include the advantages and weaknesses of the LMMs in GWAS. Finally, we discuss the future perspective and conclusion. The present review paper would be helpful to the researchers for selecting appropriate LMM models and methods quickly for GWAS data analysis and would benefit the scientific society. |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 通讯
|
WOS研究方向 | Plant Sciences
|
WOS类目 | Plant Sciences
|
WOS记录号 | WOS:000896118500001
|
出版者 | |
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:4
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/417100 |
专题 | 生命科学学院_生物系 生命科学学院 |
作者单位 | 1.Zhejiang Univ, Inst Bioinformat, Hangzhou 310058, Peoples R China 2.Southern Univ Sci & Technol, Sch Life Sci, Dept Biol, Shenzhen 518055, Peoples R China 3.Univ Alabama Birmingham, Dept Biostat, Birmingham, AL 35294 USA |
第一作者单位 | 生物系; 生命科学学院 |
通讯作者单位 | 生物系; 生命科学学院 |
推荐引用方式 GB/T 7714 |
Alamin, Md.,Sultana, Most. Humaira,Lou, Xiangyang,et al. Dissecting Complex Traits Using Omics Data: A Review on the Linear Mixed Models and Their Application in GWAS[J]. PLANTS-BASEL,2022,11(23).
|
APA |
Alamin, Md.,Sultana, Most. Humaira,Lou, Xiangyang,Jin, Wenfei,&Xu, Haiming.(2022).Dissecting Complex Traits Using Omics Data: A Review on the Linear Mixed Models and Their Application in GWAS.PLANTS-BASEL,11(23).
|
MLA |
Alamin, Md.,et al."Dissecting Complex Traits Using Omics Data: A Review on the Linear Mixed Models and Their Application in GWAS".PLANTS-BASEL 11.23(2022).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论