[1] 朱日祥, 侯增谦, 郭正堂, 等. 宜居地球的过去, 现在与未来——地球科学发展战略概要[J]. 科学通报, 2021, 66(35): 4485-4490.
[2] HALL R. Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: Computer-based reconstructions, model and animations[J]. Journal of Asian Earth Sciences, 2002, 20(4): 353-431.
[3] ZAHIROVIC S, SETON M, MÜLLER R D. The Cretaceous and Cenozoic tectonic evolution of Southeast Asia[J]. Solid Earth, 2014, 5(1): 227-273.
[4] LALLEMAND S. Philippine Sea Plate inception, evolution, and consumption with special emphasis on the early stages of Izu-Bonin-Mariana subduction[J]. Progress in Earth and Planetary Science, 2016, 3(1) : 1-27.
[5] WU J, SUPPE J, LU R, et al. Philippine Sea and East Asian plate tectonics since 52 Ma constrained by new subducted slab reconstruction methods[J]. Journal of Geophysical Research: Solid Earth, 2016, 121(6): 4670-4741.
[6] MA P, LIU S, GURNIS M, et al. Slab Horizontal Subduction and Slab Tearing Beneath East Asia[J]. Geophysical Research Letters, 2019, 46(10): 5161-5169.
[7] QUEAÑO K L, YUMUL G P, MARQUEZ E J, et al. Consumed tectonic plates in Southeast Asia: Markers from the Mesozoic to early Cenozoic stratigraphic units in the northern and central Philippines[J]. Journal of Asian Earth Sciences: X, 2020, 4(1): 1-20.
[8] SIBUET J C, ZHAO M, WU J, et al. Geodynamic and plate kinematic context of South China Sea subduction during Okinawa trough opening and Taiwan orogeny[J]. Tectonophysics, 2021, 817,(1): 229050.
[9] 丁仲礼. 中国大洋钻探二十年[J]. 科学通报, 2018, 63(36): 3866-3867.
[10] REAGAN M K, ISHIZUKA O, STERN R J, et al. Fore-arc basalts and subduction initiation in the Izu-Bonin-Mariana system[J]. Geochemistry Geophysics Geosystems, 2010, 11(3): 1-17.
[11] ARCULUS R J, ISHIZUKA O, BOGUS K A, et al. A record of spontaneous subduction initiation in the Izu–Bonin–Mariana arc[J]. Nature Geoscience, 2015, 8(9): 728-733.
[12] MAUNDER B, PRYTULAK J, GOES S, et al. Rapid subduction initiation and magmatism in the Western Pacific driven by internal vertical forces[J]. Nature Communications, 2020, 11(1): 1874.
[13] CHEN Y, NIU Y, XUE Q, et al. An iron isotope perspective on back-arc basin development: Messages from Mariana Trough basalts[J]. Earth and Planetary Science Letters, 2021, 572(1):117133.
[14] LI H, ARCULUS R J, ISHIZUKA O, et al. Basalt derived from highly refractory mantle sources during early Izu-Bonin-Mariana arc development[J]. Nature Communications, 2021, 12(1): 1723.
[15] 汪品先, 翦知湣. 探索南海深部的回顾与展望[J]. 中国科学: 地球科学, 2019, 49(10): 1590-1606.
[16] LI C-F, XU X, LIN J, et al. Ages and magnetic structures of the South China Sea constrained by deep tow magnetic surveys and IODP Expedition 349[J]. Geochemistry, Geophysics, Geosystems, 2014, 15(12): 4958-4983.
[17] GUAN Q, ZHANG T, TAYLOR B, et al. Ridge jump reorientation of the South China Sea revealed by high‐resolution magnetic data[J]. Terra Nova, 2021, 33(5): 475-482.
[18] HILDE T W C, LEE C-S. Origin and evolution of the West Philippine Basin: A new interpretation[J]. Tectonophysics, 1984, 102(1–4): 85-104.
[19] DESCHAMPS A, LALLEMAND S. The West Philippine Basin: An Eocene to early Oligocene back arc basin opened between two opposed subduction zones[J]. Journal of Geophysical Research: Solid Earth, 2002, 107(B12): 1-24.
[20] ISHIZUKA O, TAYLOR R N, OHARA Y, et al. Upwelling, rifting, and age-progressive magmatism from the Oki-Daito mantle plume[J]. Geology, 2013, 41(9): 1011-1014.
[21] SASAKI T, YAMAZAKI T, ISHIZUKA O. A revised spreading model of the West Philippine Basin[J]. Earth, Planets and Space, 2014, 66(1): 1-9.
[22] OKINO K, OHARA Y, KASUGA S, et al. The Philippine Sea: New survey results reveal the structure and the history of the marginal basins[J]. Geophysical Research Letters, 1999, 26(15): 2287-2290.
[23] SDROLIAS M, ROEST W R, MÜLLER R D. An expression of philippine sea plate rotation: The parece vela and shikoku basins[J]. Tectonophysics, 2004, 394(1–2): 69-86.
[24] YAMAZAKI T, TAKAHASHI M, IRYU Y, et al. Philippine Sea Plate motion since the Eocene estimated from paleomagnetism of seafloor drill cores and gravity cores[J]. Earth, Planets and Space, 2010, 62(6): 495-502.
[25] QUEANO K L, ALI J R, MILSOM J, et al. North Luzon and the Philippine Sea Plate motion model: Insights following paleomagnetic, structural, and age-dating investigations[J]. Journal of Geophysical Research: Solid Earth, 2007, 112(5): B05101.
[26] LEE T Y, LAWVER L A. Cenozoic plate reconstruction of Southeast Asia[J]. Tectonophysics, 1995, 251(1-4): 85-138.
[27] ISOZAKI Y, AOKI K, NAKAMA T, et al. New insight into a subduction-related orogen: A reappraisal of the geotectonic framework and evolution of the Japanese Islands[J]. Gondwana Research, 2010, 18(1): 82-105.
[28] RAIMBOURG H, FAMIN V, PALAZZIN G, et al. Tertiary evolution of the Shimanto belt (Japan): A large-scale collision in Early Miocene[J]. Tectonics, 2017, 36(7): 1317-1337.
[29] 金钟, 李全兴, 杨华, 等. 南中国海西南部海盆海山古地磁研究[J]. 海洋通报, 2002, 21(2): 41-48.
[30] 金钟, 徐世浙, 李全兴. 南海海盆海山古地磁及海盆的形成演化[J]. 海洋学报, 2004, 26(5): 83-93.
[31] TAYLOR B, HAYES D E. Origin and history of the South China Sea basin[M]//Hayes D E. Tectonic and Geologic Evolution of Southeast Asian Seas and Islands: Part 2. Washington: AGU, 1983: 23-56.
[32] BEN-AVRAHAM Z, UYEDA S. The evolution of the China Basin and the mesozoic paleogeography of Borneo[J]. Earth and Planetary Science Letters, 1973, 18(2): 365-376.
[33] TAYLOR B, HAYES D E. The tectonic evolution of the South China Basin[J]. 1980, 23: 89-104.
[34] 陈圣源. 南海磁力异常图[C]//何廉声. 南海地质地球物理图集. 广州: 广东地图出版社, 1987: 1-113.
[35] 吕文正, 柯长志, 吴声迪, 等. 南海中央海盆条带磁异常特征及构造演化[J]. 海洋学报, 1987, 9(1): 69-78.
[36] 姚伯初, 曾维军. 中美合作调研南海地质专报[M]. 武汉: 中国地质大学出版社, 1994.
[37] BRIAIS A, PATRIAT P, TAPPONNIER P. Updated interpretation of magnetic anomalies and seafloor spreading stages in the south China Sea: Implications for the Tertiary tectonics of Southeast Asia[J]. Journal of Geophysical Research: Solid Earth, 1993, 98(B4): 6299-6328.
[38] HAYES D E, NISSEN S S, BUHL P, et al. Throughgoing crustal faults along the northern margin of the South China Sea and their role in crustal extension[J]. Journal of Geophysical Research, 1995, 100(B11): 22435-22446.
[39] BRIAIS A, TAPPONNIER P, PAUTOT G. Constraints of Sea Beam data on crustal fabrics and seafloor spreading in the South China Sea[J]. Earth and Planetary Science Letters, 1989, 95(3-4): 307-320.
[40] HSU S-K, YEH Y, DOO W-B, et al. New Bathymetry and Magnetic Lineations Identifications in the Northernmost South China Sea and their Tectonic Implications[J]. Marine Geophysical Researches, 2004, 25(1): 29-44.
[41] LI C-F, ZHOU Z, LI J, et al. Structures of the northeasternmost South China Sea continental margin and ocean basin: geophysical constraints and tectonic implications[J]. Marine Geophysical Researches, 2007, 28(1): 59-79.
[42] LI C-F, SONG T. Magnetic recording of the Cenozoic oceanic crustal accretion and evolution of the South China Sea basin[J]. Chinese Science Bulletin, 2012, 57(24): 3165-3181.
[43] BARCKHAUSEN U, ENGELS M, FRANKE D, et al. Evolution of the South China Sea: Revised ages for breakup and seafloor spreading[J]. Marine and Petroleum Geology, 2014, 58(1): 599-611.
[44] CHANG J H, LEE T Y, HSU H H, et al. Comment on Barckhausen et al., 2014 - Evolution of the South China Sea: Revised ages for breakup and seafloor spreading[J]. Marine and Petroleum Geology, 2015, 59(1): 676-678.
[45] BARCKHAUSEN U, ENGELS M, FRANKE D, et al. Reply to Chang et al., 2014, Evolution of the South China Sea: Revised ages for breakup and seafloor spreading[J]. Marine and Petroleum Geology, 2015, 59(1): 679-681.
[46] CANDE S C, KENT D V. Revised calibration of the geomagnetic polarity timescale for the Late Cretaceous and Cenozoic[J]. Journal of Geophysical Research, 1995, 100(B4): 6093-6095.
[47] OGG J G. Geomagnetic polarity time scale[M]//Gradstein F M, Ogg J G, Schmitz M D, et al. Geologic Time Scale 2020. Amsterdam: Elsevier, 2020: 159-192.
[48] CLIFT P, LEE J IL, CLARK M K, et al. Erosional response of South China to arc rifting and monsoonal strengthening; a record from the South China Sea[J]. Marine Geology, 2002, 184(3–4): 207-226.
[49] 吴国瑄, 覃军干, 茅绍智. 南海深海相渐新统孢粉记录[J]. 科学通报, 2003, 48(17): 1868-1871.
[50] 邵磊, 庞雄, 陈长民, 等. 南海北部渐新世末沉积环境及物源突变事件[J]. 中国地质, 2007, 34(6): 1022-1031.
[51] 唐松, 邵磊, 吴国瑄, 等. 南海北部 ODP 1148 站沉积物特征及其来源[J]. 海洋地质动态, 2009, 25(7): 7-13.
[52] LI X, WEI G, SHAO L, et al. Geochemical and Nd isotopic variations in sediments of the South China Sea: a response to Cenozoic tectonism in SE Asia[J]. Earth and Planetary Science Letters, 2003, 211(3-4): 207-220.
[53] 蒋恒毅, 李安春, 万世明. 3000 万年以来南海沉积矿物组成及其地质意义[J]. 海洋科学集刊, 2006, 47(1): 83-94.
[54] 李安春, 黄杰, 蒋恒毅, 等. 渐新世以来南海北部陆坡区沉积演化及其对构造的响应[J]. 地球物理学报, 2011, 54(12): 3233-3245.
[55] WEI G, LIU Y, MA J, et al. Nd, Sr isotopes and elemental geochemistry of surface sediments from the South China Sea: Implications for Provenance Tracing[J]. Marine Geology, 2012, 319–322(1): 21-34.
[56] SHAO L, CAO L, PANG X, et al. Detrital zircon provenance of the P aleogene syn‐rift sediments in the northern S outh C hina Sea[J]. Geochemistry, Geophysics, Geosystems, 2016, 17(2): 255-269.
[57] WANG C, WEN S, LIANG X, et al. Detrital zircon provenance record of the oligocene Zhuhai Formation in the Pearl River Mouth Basin, northern South China sea[J]. Marine and Petroleum Geology, 2018, 98(1): 448-461.
[58] CHEN S, QIAO P, ZHANG H, et al. Geochemical characteristics of Oligocene-Miocene sediments from the deepwater area of the northern South China Sea and their provenance implications[J]. Acta Oceanologica Sinica, 2018, 37(2): 35-43.
[59] WANG W, YANG X, BIDGOLI T S, et al. Detrital zircon geochronology reveals source-to-sink relationships in the Pearl River Mouth Basin, China[J]. Sedimentary geology, 2019, 388(1): 81-98.
[60] TANG X, YANG S, HU S. Provenance of the Paleogene sediments in the Pearl River Mouth Basin, northern South China Sea: Insights from zircon U-Pb and fission track double dating[J]. Journal of Asian Earth Sciences, 2020, 200(1): 104494.
[61] CAO L, SHAO L, QIAO P, et al. Early Miocene birth of modern Pearl River recorded low-relief, high-elevation surface formation of SE Tibetan Plateau[J]. Earth and Planetary Science Letters, 2018, 496(1): 120-131.
[62] WANG C, LIANG X, FOSTER D A, et al. Detrital zircon ages: A key to unraveling provenance variations in the eastern Yinggehai–Song Hong Basin, South China Sea[J]. AAPG Bulletin, 2019, 103(7): 1525-1552.
[63] 黄奇瑜. 台湾岛的年龄[J]. 中国科学: 地球科学, 2017, 47(4): 394-405.
[64] LAN Q, YAN Y, HUANG C, et al. Tectonics, topography, and river system transition in E ast T ibet: Insights from the sedimentary record in Taiwan[J]. Geochemistry, Geophysics, Geosystems, 2014, 15(9): 3658-3674.
[65] ZHANG X, YAN Y, HUANG C-Y, et al. Provenance analysis of the Miocene accretionary prism of the Hengchun Peninsula, southern Taiwan, and regional geological significance[J]. Journal of Asian Earth Sciences, 2014, 85(1): 26-39.
[66] DENG K, YANG S, LI C, et al. Detrital zircon geochronology of river sands from Taiwan: Implications for sedimentary provenance of Taiwan and its source link with the east China mainland[J]. Earth-Science Reviews, 2017, 164(1): 31-47.
[67] XU Y. Comment on “Detrital zircon geochronology of river sands from Taiwan: Implications for sedimentary provenance of Taiwan and its source link with the east China mainland” by Deng K, Yang SY, Li C, Su N, Bi L, Chang YP, Chang SC.[Earth-Science Reviews 164 (2017),31-47][J]. Earth-Science Reviews, 2017, 168(1): 232-234.
[68] DENG K, YANG S, BI L. Reply to comment by Yonghang Xu on “Detrital zircon geochronology of river sands from Taiwan: Implications for sedimentary provenance of Taiwan and its source link with the east China mainland”[J]. Earth-Science Reviews, 2017, 168(1): 235-239.
[69] LOUDEN K E. Paleomagnetism of DSDP sediments, phase shifting of magnetic anomalies, and rotations of the West Philippine Basin[J]. Journal of Geophysical Research, 1977, 82(20): 2989-3002.
[70] KINOSHITA H. Paleomagnetism of sediment cores from Deep Sea Drilling Project Leg 58, Philippine Sea[M]//Klein G deV, Kobayashi K, Chamley H, et al. Initial Reports of the Deep Sea Drilling Project, Volume 58. Washington: US Government Printing Office, 1980: 765-768.
[71] KEATING B. Paleomagnetic study of sediments from deep sea drilling project leg 59[M]//Kroenke L, Scott R, Balshaw K, et al. Initial Reports of the Deep Sea Drilling Project, Volume 59. Washington: US Government Printing Office, 1981: 523-532.
[72] KEATING B, HERRERO E. Paleomagnetic studies of basalts and andesites from deep sea drilling project leg 59[M]//Kroenke L, Scott R, Balshaw K, et al. Initial Reports of the Deep Sea Drilling Project, Volume 59. Washington: US Government Printing Office, 1981: 533-543.
[73] BLEIL U. Paleomagnetism of deep sea drilling project Leg 60 sediments and igneous rocks from the Mariana region[M]//Hussong D M, Uyeda S, Blanchet R, et al. Initial Reports of the Deep Sea Drilling Project, Volume 60. Washington: US Government Printing Office, 1982: 855-873.
[74] HASTON R B, STOKKING L B, ALI J. Paleomagnetic data from Holes 782A, 784A, and 786A, Leg 125[M]//Fryer P, Pearce J A, Stokking L B, et al. Proceedings of the Ocean Drilling Program, Scientific Results, Volume 125. Texas: Ocean Drilling Program, 1992: 535-545.
[75] KOYAMA M, CISOWSKI S M, PEZARD P. Paleomagnetic evidence for northward drift and clockwise rotation of the Izu-Bonin Forearc since the early Oligocene[M]//Taylor B, Fujioka K, Janecek T R, et al. Proceedings of the Ocean Drilling Program, Scientific Results, Volume 126. Texas: Ocean Drilling Program, 1992: 353-370.
[76] RICHTER C, ALI J R. Philippine Sea Plate motion history: Eocene-Recent record from ODP Site 1201, central West Philippine Basin[J]. Earth and Planetary Science Letters, 2015, 410(1): 165-173.
[77] YAMAZAKI T, CHIYONOBU S, ISHIZUKA O, et al. Rotation of the Philippine Sea plate inferred from paleomagnetism of oriented cores taken with an ROV-based coring apparatus[J]. Earth, Planets and Space, 2021, 73(1): 1-10.
[78] HALL R, FULLER M, ALI J R, et al. The Philippine sea plate: Magnetism and reconstructions[J]. Geophysical Monograph Series, 1995, 88(1): 371-404.
[79] KODAMA K, KEATING B H, HELSLEY C E. Paleomagnetism of the Bonin Islands and its tectonic significance[J]. Tectonophysics, 1983, 95(1-2): 25-42.
[80] HASTON R B, FULLER M. Paleomagnetic data from the Philippine Sea plate and their tectonic significance[J]. Journal of Geophysical Research, 1991, 96(B4): 6073-6098.
[81] HASTON R, FULLER M, SCHMIDTKE E. Paleomagnetic results from Palau, West Caroline Islands: A constraint on Philippine Sea plate motion[J]. Geology, 1988, 16(7): 654-657.
[82] HALL R, ALI J R, ANDERSON C D. Cenozoic motion of the Philippine Sea Plate: Palaeomagnetic evidence from eastern Indonesia[J]. Tectonics, 1995, 14(5): 1117-1132.
[83] HALL R, ALI J R, ANDERSON C D, et al. Origin and motion history of the Philippine Sea Plate[J]. Tectonophysics, 1995, 251(1-4): 229-250.
[84] HALL R. Australia–SE Asia collision: plate tectonics and crustal flow[J]. Geological Society London Special Publications, 2011, 355(1): 75-109.
[85] 赵西西, 杨逸凯, 谌微微等. 菲律宾吕宋岛与菲律宾海板块在新生代的构造亲缘关系: 古地磁学和锆石U-Pb年代学证据[C]//同济大学海洋地质国家重点实验室. 第六届地球系统科学大会会议手册及摘要集, 上海: 同济大学出版社, 2021: 516-517.
[86] LOUDEN K E. Magnetic anomalies in the West Philippine Basin[M]//Sutton G H, Manghnani M H, Moberly R, et al. The Geophysics of the Pacific Ocean Basin and Its Margin, Volume 19. Washington: AGU,1976: 253-267.
[87] MROZOWSKI C L, LEWIS S D, HAYES D E. Complexities in the tectonic evolution of the West Philippine Basin[J]. Tectonophysics, 1982, 82(1): 1-24.
[88] SHIH T. Marine magnetic anomalies from the western Philippine Sea: implications for the evolution of marginal basins[M]//Hayes D E. The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands, Volume 23. Washington: AGU, 1980: 49-75.
[89] SETON M, MÜLLER R D, ZAHIROVIC S, et al. Global continental and ocean basin reconstructions since 200Ma[J]. Earth-Science Reviews, 2012, 113(3-4): 212-270.
[90] DOO W-B, HSU S-K, YEH Y-C, et al. Age and tectonic evolution of the northwest corner of the West Philippine Basin[J]. Marine Geophysical Researches, 2015, 36(2): 113-125.
[91] MROZOWSKI C L, HAYES D E. The evolution of the Parece Vela Basin, eastern Philippine Sea[J]. Earth and Planetary Science Letters, 1979, 46(1): 49-67.
[92] KASUGA S, OHARA Y. A new model of back-arc spreading in the Parece Vela Basin, northwest Pacific margin[J]. Island Arc, 1997, 6(3): 316-326.
[93] OKINO K, KASUGA S, OHARA Y. A New Scenario of the Parece Vela Basin Genesis[J]. Marine Geophysical Researches, 1998, 20(1): 21-40.
[94] WATTS A B, WEISSEL J K. Tectonic history of the Shikoku marginal basin[J]. Earth and Planetary Science Letters, 1975, 25(3): 239-250.
[95] KOBAYASHI K, NAKADA M. Magnetic anomalies and tectonic evolution of the shikoku inter-arc basin[J]. Journal of Physics of the Earth, 1978, 26(S1): S391-S402.
[96] OKINO K, SHIMAKAWA Y, NAGAOKA S. Evolution of the Shikoku Basin[J]. Journal of Geomagnetism and Geoelectricity, 1994, 46(6): 463-479.
[97] SHIPBOARD SCIENTIFIC PARTY. Site 1177[M]//Moore G F, Taira A, Klaus A, et al. Proceedings the Ocean Drilling Program, Initial Reports Volume 190. Texas: Ocean Drilling Program, 1992: 1-91.
[98] UNDERWOOD M B, FERGUSSON C L. Late Cenozoic evolution of the Nankai trench-slope system: Evidence from sand petrography and clay mineralogy[J]. Geological Society Special Publication, 2005, 244(1): 113-129.
[99] CLIFT P D, CARTER A, NICHOLSON U, et al. Zircon and apatite thermochronology of the Nankai Trough accretionary prism and trench, Japan: Sediment transport in an active and collisional margin setting[J]. Tectonics, 2013, 32(3): 377-395.
[100] WANG P, LI Q. Geology of the China Seas[M]. Dordrecht: Springer, 2009.
[101] 李学杰, 王哲, 姚永坚, 等. 南海成因及其演化模式探讨[J]. 中国地质, 2020, 47(5): 1310-1322.
[102] 张功成, 贾庆军, 王万银, 等. 南海构造格局及其演化[J]. 地球物理学报, 2018, 61(10): 4194-4215.
[103] 李三忠, 索艳慧, 刘鑫, 等. 南海的基本构造特征与成因模型: 问题与进展及论争[J]. 海洋地质与第四纪地质, 2012, 32(6): 35-53.
[104] LI F, SUN Z, YANG H. Possible spatial distribution of the Mesozoic volcanic arc in the present‐day South China Sea continental margin and its tectonic implications[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(8): 6215-6235.
[105] ZHOU D, RU K, CHEN H. Kinematics of Cenozoic extension on the South China Sea continental margin and its implications for the tectonic evolution of the region[J]. Tectonophysics, 1995, 251(1–4): 161-177.
[106] YE Q, MEI L, SHI H, et al. The Late Cretaceous tectonic evolution of the South China Sea area: An overview, and new perspectives from 3D seismic reflection data[J]. Earth-science reviews, 2018, 187: 186-204.
[107] SUN L, SUN Z, ZHANG Y, et al. Multi-stage carbonate veins at IODP Site U1504 document Early Cretaceous to early Cenozoic extensional events on the South China Sea margin[J]. Marine Geology, 2021, 442(1): 106656.
[108] ZHAO F, ALVES T M, XIA S, et al. Along-strike segmentation of the South China Sea margin imposed by inherited pre-rift basement structures[J]. Earth and Planetary Science Letters, 2020, 530(1): 115862.
[109] LI F, SUN Z, YANG H, et al. Continental interior and edge breakup at convergent margins induced by subduction direction reversal: A numerical modeling study applied to the South China Sea margin[J]. Tectonics, 2020, 39(11): e2020TC006409.
[110] LARSEN H C, MOHN G, NIRRENGARTEN M, et al. Rapid transition from continental breakup to igneous oceanic crust in the South China Sea[J]. Nature Geoscience, 2018, 11(10): 782-789.
[111] WANG P, HUANG C-Y, LIN J, et al. The South China Sea is not a mini-Atlantic: plate-edge rifting vs intra-plate rifting[J]. National Science Review, 2019, 6(5): 902-913.
[112] 林间, 李家彪, 徐义刚, 等. 南海大洋钻探及海洋地质与地球物理前沿研究新突破[J]. 海洋学报, 2019, 41(10): 125-140.
[113] LI C-F, LI J, DING W, et al. Seismic stratigraphy of the central South China Sea basin and implications for neotectonics[J]. Journal of Geophysical Research: Solid Earth, 2015, 120(3): 1377-1399.
[114] WANG Q, ZHAO M, ZHANG H, et al. Crustal velocity structure of the Northwest Sub-basin of the South China Sea based on seismic data reprocessing[J]. Science China Earth Sciences, 2020, 63(11): 1791-1806.
[115] ZHONG L F, CAI G Q, KOPPERS A A P, et al. 40Ar/39Ar dating of oceanic plagiogranite: Constraints on the initiation of seafloor spreading in the South China Sea[J]. Lithos, 2018, 302–303(1): 421-426.
[116] JIAN Z, JIN H, KAMINSKI M A, et al. Discovery of the marine Eocene in the northern South China Sea[J]. National Science Review, 2019, 6(5): 881–885.
[117] SIBUET J C, YEH Y C, LEE C S. Geodynamics of the South China Sea[J]. Tectonophysics, 2016, 692(1): 98-119.
[118] DING W, SUN Z, DADD K, et al. Structures within the oceanic crust of the central South China Sea basin and their implications for oceanic accretionary processes[J]. Earth and Planetary Science Letters, 2018, 488(1): 115-125.
[119] YANG T F, TIEN J, CHEN C-H, et al. Fission-track dating of volcanics in the northern part of the Taiwan-Luzon Arc: eruption ages and evidence for crustal contamination[J]. Journal of Southeast Asian Earth Sciences, 1995, 11(2): 81-93.
[120] SHAO W-Y, CHUNG S-L, CHEN W-S, et al. Old continental zircons from a young oceanic arc, eastern Taiwan: Implications for Luzon subduction initiation and Asian accretionary orogeny[J]. Geology, 2015, 43(6): 479-482.
[121] YU M, YUMUL G P, DILEK Y, et al. Diking of various slab melts beneath forearc spreading center and age constraints of the subducted slab[J]. Earth and Planetary Science Letters, 2022, 579(1): 117367.
[122] 李常珍, 李乃胜, 林美华. 菲律宾海的地势特征[J]. 海洋科学, 2000, 24(6): 47-51.
[123] MIZUNO A, OKUDA Y, NIAGUMO S, et al. Subsidence of the Daito Ridge and Associated Basins, North Philippine Sea[M]//Watkins J, Montadert L, Dickerson P W. Geological and Geophysical Investigations of Continental Margins. Texas: AAPG Memoir, 1979: 1-10.
[124] KLEIN G DE V, KOBAYASHI K. Geological summary of the North Philippine Sea, based on Deep Sea Drilling Project Leg 58 results[M]//Klein G deR, Kobayashi K, Chamley H, et al. Initial Reports of the Deep Sea Drilling Project, Volume 58. Texas: Ocean Drilling Program, 1980: 951-961.
[125] NUR A, BEN‐AVRAHAM Z. Oceanic plateaus, the fragmentation of continents, and mountain building[J]. Journal of Geophysical Research: Solid Earth, 1982, 87(B5): 3644-3661.
[126] QIAN S, ZHANG X, WU J, et al. First identification of a Cathaysian continental fragment beneath the Gagua Ridge, Philippine Sea, and its tectonic implications[J]. Geology, 2021, 49(11): 1332-1336.
[127] KARIG D E. Basin genesis in the Philippine Sea[M]//Karig D E, Ingle J C, Jr, et al. Initial Reports of the Deep Sea Drilling Project, Volume 31. Texas: Ocean Drilling Program,1975: 857-879.
[128] SENO T, MARUYAMA S. Paleogeographic reconstruction and origin of the Philippine Sea[J]. Tectonophysics, 1984, 102(1-4): 53-84.
[129] RANGIN C, JOLIVET L, PUBELLIER M. A simple model for the tectonic evolution of southeast Asia and Indonesia region for the past 43 my[J]. Bulletin de la Société géologique de France, 1990, 6(6): 889-905.
[130] UYEDA S, BEN-AVRAHAM Z. Origin and development of the Philippine Sea[J]. Nature Physical Science, 1972, 240(104): 176-178.
[131] HILDE T W C, UYEDA S, KROENKE L. Evolution of the western Pacific and its margin[J]. Tectonophysics, 1977, 38(1-2): 145-165.
[132] YAMAZAKI T, SEAMA N, OKINO K, et al. Spreading process of the northern Mariana Trough: Rifting-spreading transition at 22°N[J]. Geochemistry Geophysics Geosystems, 2003, 4(9): 1-18.
[133] NIITSUMA N. Collision tectonics in the South Fossa magna, central Japan[J]. Modern Geology, 1989, 14(1): 3-18.
[134] AMANO K. Multiple collision tectonics of the South Fossa Magna in Central Japan[J]. Modern Geology, 1991, 15(1): 315-329.
[135] SAITO S, ARIMA M, NAKAJIMA T, et al. Formation of distinct granitic magma batches by partial melting of hybrid lower crust in the Izu arc collision zone, central Japan[J]. Journal of Petrology, 2007, 48(9): 1761-1791.
[136] MAHONY S H, WALLACE L M, MIYOSHI M, et al. Volcano-tectonic interactions during rapid plate-boundary evolution in the Kyushu region, SW Japan[J]. Bulletin, 2011, 123(11-12): 2201-2223.
[137] 中国地质调查局. 中国地质调查局地质调查技术标准: DD2006-4古地磁测试技术要求[S]. 2006.
[138] ZONG K, KLEMD R, YUAN Y, et al. The assembly of Rodinia: The correlation of early Neoproterozoic (ca. 900 Ma) high-grade metamorphism and continental arc formation in the southern Beishan Orogen, southern Central Asian Orogenic Belt (CAOB)[J]. Precambrian Research, 2017, 290(1): 32-48.
[139] HU P, JIANG Z, LIU Q, et al. Estimating the concentration of aluminum‐substituted hematite and goethite using diffuse reflectance spectrometry and rock magnetism: Feasibility and limitations[J]. Journal of Geophysical Research: Solid Earth, 2016, 121(6): 4180-4194.
[140] TARLING D, HROUDA F. Magnetic anisotropy of rocks[M]. Suffolk: St Edmundsbury Press, 1993.
[141] LIU Y, GAO S, HU Z, et al. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths[J]. Journal of Petrology, 2010, 51(1–2) : 537-571.
[142] LIU Y, HU Z, GAO S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257(1–2): 34-43.
[143] COMPSTON W, WILLIAMS I S, KIRSCHVINK J L, et al. Zircon U-Pb ages for the Early Cambrian time-scale[J]. Journal of the Geological Society, 1992, 149(2): 171-184.
[144] 李献华, 刘颖. 硅酸盐岩石化学组成的 ICP-AES 和 ICP-MS 准确测定: 酸溶与碱熔分解样品方法的对比[J]. 地球化学, 2002, 31(3): 289-294.
[145] 刘颖, 刘海臣, 李献华. 用 ICP-MS 准确测定岩石样品中的 40 余种微量元素[J]. 地球化学, 1996, 25(6): 552-558.
[146] TAUXE L. Essentials of Paleomagnetism[M]. San Diego: University of California Press, 2010.
[147] EVANS D A D. Proterozoic low orbital obliquity and axial-dipolar geomagnetic field from evaporite palaeolatitudes[J]. Nature, 2006, 444(7115): 51-55.
[148] VAN DER VOO R. The reliability of paleomagnetic data[J]. Tectonophysics, 1990, 184(1): 1-9.
[149] MEERT J G, PIVARUNAS A F, EVANS D A D, et al. The magnificent seven: a proposal for modest revision of the quality index[J]. Tectonophysics, 2020, 790(1): 228549.
[150] MCFADDEN P L, MCELHINNY M W. Classification of the reversal test in palaeomagnetism[J]. Geophysical Journal International, 1990, 103(3): 725-729.
[151] HESLOP D, ROBERTS A P. Revisiting the paleomagnetic reversal test: A Bayesian hypothesis testing framework for a common mean direction[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(9): 7225-7236.
[152] PIKE C R, ROBERTS A P, DEKKERS M J, et al. An investigation of multi-domain hysteresis mechanisms using FORC diagrams[J]. Physics of the Earth and Planetary Interiors, 2001, 126(1-2): 11-25.
[153] WEI W, LIU C, HOU Y, et al. Discovery of a hidden Triassic Arc in the Southern South China Sea: Evidence for the breakaway of a ribbon continent with implications for the evolution of the Western Pacific margin[J]. Terra Nova, 2022, 34(1): 12-19.
[154] 朱日祥, 杨振宇, 马醒华, 等. 中国主要地块显生宙古地磁视极移曲线与地块运动[J]. 中国科学 D 辑, 1998, 28(S1): 1-16.
[155] 吴汉宁, 吕建军, 朱日祥, 等. 扬子地块显生宙古地磁视极移曲线及地块运动特征[J]. 中国科学 D 辑, 1998, 28(S1): 69-78.
[156] COGNÉ J P, BESSE J, CHEN Y, et al. A new late cretaceous to present APWP for Asia and its implications for paleomagnetic shallow inclinations in Central Asia and Cenozoic Eurasian plate deformation[J]. Geophysical Journal International, 2013, 192(3): 1000-1024.
[157] JEONG D, YU Y. Apparent polar wander path for East Asia and implications for paleomagnetic low inclination in sedimentary rocks[J]. Physics of the Earth and Planetary Interiors, 2019, 289(1): 63-72.
[158] 孟俊. 西藏高原晚中生代以来重要构造事件的古地磁学约束[D]. 北京: 中国地质大学(北京), 2013.
[159] TORSVIK T H, VAN DER VOO R, PREEDEN U, et al. Phanerozoic polar wander, palaeogeography and dynamics[J]. Earth-Science Reviews, 2012, 114(3-4): 325-368.
[160] FRISCH W, MESCHEDE M, BLAKEY R C. Plate tectonics: continental drift and mountain building[M]. Berlin: Springer,2010.
[161] LIU J, SHI X, LIU Q, et al. Magnetostratigraphy of a greigite‐bearing core from the South Yellow Sea: Implications for remagnetization and sedimentation[J]. Journal of Geophysical Research: Solid Earth, 2014, 119(10): 7425-7441.
[162] FLINN D. On folding during three-dimensional progressive deformation[J]. Quarterly Journal of the Geological Society, 1962, 118(1-4): 385-428.
[163] LIU Q, DENG C, YU Y, et al. Temperature dependence of magnetic susceptibility in an argon environment: implications for pedogenesis of Chinese loess/palaeosols[J]. Geophysical Journal International, 2005, 161(1): 102-112.
[164] BARRN V, TORRENT J. Evidence for a simple pathway to maghemite in Earth and Mars soils[J]. Geochimica et Cosmochimica Acta, 2002, 66(15): 2801-2806.
[165] DENG C, ZHU R, JACKSON M J, et al. Variability of the temperature-dependent susceptibility of the Holocene eolian deposits in the Chinese Loess Plateau: A pedogenesis indicator[J]. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 2001, 26(11-12): 873-878.
[166] FLORINDO F, ZHU R, GUO B, et al. Magnetic proxy climate results from the Duanjiapo loess section, southernmost extremity of the Chinese loess plateau[J]. Journal of Geophysical Research: Solid Earth, 1999, 104(B1): 645-659.
[167] ROBERTS A P, CUI Y, VEROSUB K L. Wasp‐waisted hysteresis loops: Mineral magnetic characteristics and discrimination of components in mixed magnetic systems[J]. Journal of Geophysical Research: Solid Earth, 1995, 100(B9): 17909-17924.
[168] ARASON P, LEVI S. Maximum likelihood solution for inclination-only data in paleomagnetism[J]. Geophysical Journal International, 2010, 182(2): 753-771.
[169] 吴元保, 郑永飞. 锆石成因矿物学研究及其对 U-Pb 年龄解释的制约[J]. 科学通报, 2004, 49(16): 1589-1604.
[170] CARDONA A, Cordani U G, Ruiz J, et al. U-Pb zircon geochronology and Nd isotopic signatures of the pre-Mesozoic metamorphic basement of the eastern Peruvian Andes: Growth and provenance of a late Neoproterozoic to Carboniferous accretionary orogen on the northwest margin of Gondwana[J]. The journal of Geology, 2009, 117(3): 285-305.
[171] CLIFT P D, ELLAM R M, HINTON R, et al. Pb, Sr and Nd isotopic constraints on the evolving provenance of the Red River[J]. Geochimica et Cosmochimica Acta Supplement, 2008, 72(12): A168.
[172] YAN Y, XIA B, LIN G, et al. Geochemical and Nd isotope composition of detrital sediments on the north margin of the South China Sea: Provenance and tectonic implications[J]. Sedimentology, 2007, 54(1): 1-17.
[173] ROLLINSON H R. Using geochemical data: evaluation, presentation, interpretation[M]. Louden: Routledge, 1993.
[174] 邵磊, 刘志伟, 朱伟林. 陆源碎屑岩地球化学在盆地分析中的应用[J]. 地学前缘, 2000, 7(3): 297-304.
[175] HOLLAND H D. The chemical evolution of the atmosphere and oceans[M]. Princeton: Princeton University Press, 2020.
[176] BHATIA M R, CROOK K A W. Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins[J]. Contributions to mineralogy and petrology, 1986, 92(2): 181-193.
[177] BHATIA M R. Plate tectonics and geochemical composition of sandstones[J]. The Journal of Geology, 1983, 91(6): 611-627.
[178] LIU Q, ROBERTS A P, LARRASOAÑA J C, et al. Environmental magnetism: Principles and applications[J]. Reviews of Geophysics, 2012, 50(4): 1-50.
[179] SCHEINOST A C. Use and Limitations of Second-Derivative Diffuse Reflectance Spectroscopy in the Visible to Near-Infrared Range to Identify and Quantify Fe Oxide Minerals in Soils[J]. Clays and Clay Minerals, 1998, 46(5): 528-536.
[180] GAI C, LIU Q, ROBERTS A P, et al. East Asian monsoon evolution since the late Miocene from the South China Sea[J]. Earth and Planetary Science Letters, 2020, 530(1): 115960.
[181] BLOEMENDAL J, KING J W, HALL F R, et al. Rock magnetism of Late Neogene and Pleistocene deep‐sea sediments: Relationship to sediment source, diagenetic processes, and sediment lithology[J]. Journal of Geophysical Research: Solid Earth, 1992, 97(B4): 4361–4375.
[182] LIU Q, ROBERTS A P, TORRENT J, et al. What do the HIRM and S -ratio really measure in environmental magnetism?[J]. Geochemistry, Geophysics, Geosystems, 2007, 8(9): 1-10.
[183] ZHANG Y G, JI J, BALSAM W L, et al. High resolution hematite and goethite records from ODP 1143, South China Sea: Co-evolution of monsoonal precipitation and El Niño over the past 600,000 years[J]. Earth and Planetary Science Letters, 2007, 264(1-2): 136-150.
[184] KOBAYASHI K. Subsidence of the Shikoku back-arc basin[J]. Tectonophysics, 1984, 102(1-4): 105-117.
[185] CHEN Y, MENG J, LIU H, et al. Detrital zircons record the evolution of the Cathaysian Coastal Mountains along the South China margin[J]. Basin Research, 2022, 34(2): 688-701.
[186] ZHENG H, CLIFT P D, HE M, et al. Formation of the First Bend in the late Eocene gave birth to the modern Yangtze River, China[J]. Geology, 2021, 49(1): 35-39.
[187] ZHENG H, CLIFT P D, WANG P, et al. Pre-miocene birth of the Yangtze River[J]. Proceedings of the National Academy of Sciences, 2013, 110(19): 7556-7561.
[188] ZHANG Z, DALY J S, TYRRELL S, et al. Formation of the three Gorges (Yangtze River) no earlier than 10 Ma[J]. Earth-Science Reviews, 2021, 216(1): 103601.
[189] SUN X, TIAN Y, KUIPER K F, et al. No Yangtze River prior to the late Miocene: Evidence from detrital muscovite and K‐feldspar 40Ar/ 39Ar geochronology[J]. Geophysical Research Letters, 2021, 48(5): e2020GL089903.
[190] LI Y, ZHAO J, WEI C, et al. Cadmium and clay mineral analysis of late Pliocene–Pleistocene deposits from Jianghan Basin, central China: Implications for sedimentary provenance and evolution of the Yangtze River[J]. Quaternary International, 2021, 598(1): 1-14.
[191] ZHANG Y, LI C, WANG Q, et al. Magnetism parameters characteristics of drilling deposits in Jianghan Plain and indication for forming of the Yangtze River Three Gorges[J]. Chinese Science Bulletin, 2008, 53(4): 584-590.
[192] JIA J T, ZHENG H B, HUANG X T, et al. Detrital zircon U-Pb ages of Late Cenozoic sediments from the Yangtze delta: Implication for the evolution of the Yangtze River[J]. Chinese Science Bulletin, 2010, 55(15): 1520-1528.
[193] DODSON M H, COMPSTON W, WILLIAMS I S, et al. A search for ancient detrital zircons in Zimbabwean sediments[J]. Journal of the Geological Society, 1988, 145(6): 977-983.
[194] ANDERSEN T. Detrital zircons as tracers of sedimentary provenance: Limiting conditions from statistics and numerical simulation[J]. Chemical Geology, 2005, 216(3-4): 249-270.
[195] LIU Z, COLIN C, HUANG W, et al. Climatic and tectonic controls on weathering in south China and Indochina Peninsula: Clay mineralogical and geochemical investigations from the Pearl, Red, and Mekong drainage basins[J]. Geochemistry Geophysics Geosystems, 2007, 8(5) : 1-18.
[196] YANG S Y, JIANG S Y, LING H F, et al. Sr-Nd isotopic compositions of the Changjiang sediments: Implications for tracing sediment sources[J]. Science in China, Series D: Earth Sciences, 2007, 50(10): 1556-1565.
[197] MENG X, LIU Y, SHI X, et al. Nd and Sr isotopic compositions of sediments from the Yellow and Yangtze Rivers: Implications for partitioning tectonic terranes and crust weathering of the Central and Southeast China[J]. Frontiers of Earth Science in China, 2008, 2(4): 418-426.
[198] TOLLSTRUP D, GILL J, KENT A, et al. Across-arc geochemical trends in the Izu-Bonin arc: Contributions from the subducting slab, revisited[J]. Geochemistry Geophysics Geosystems, 2010, 11(1) : 1-27.
[199] XU X, O’REILLY S Y, GRIFFIN W L, et al. The crust of Cathaysia: Age, assembly and reworking of two terranes[J]. Precambrian Research, 2007, 158(1-2): 51-78.
[200] ZHAO M, SHAO L, QIAO P. Characteristics of detrital zircon U-Pb geochronology of the pearl river sands and its implication on provenances[J]. Journal of Tongji University, 2015, 43(6): 915-923.
[201] HE M, ZHENG H, CLIFT P D. Zircon U-Pb geochronology and Hf isotope data from the Yangtze River sands: Implications for major magmatic events and crustal evolution in Central China[J]. Chemical Geology, 2013, 360-361(1): 186-203.
[202] ZHANG X, HUANG C, WANG Y, et al. Evolving Yangtze River reconstructed by detrital zircon U‐Pb dating and petrographic analysis of Miocene marginal Sea sedimentary rocks of the Western Foothills and Hengchun Peninsula, Taiwan[J]. Tectonics, 2017, 36(4): 634-651.
[203] TSAI C H, SHYU J B H, CHUNG S L, et al. Detrital zircon record from major rivers of luzon island: Implications for cenozoic continental growth in SE asia[J]. Journal of the Geological Society, 2019, 176(4): 727-735.
[204] ISHIZUKA O, HICKEY-VARGAS R, ARCULUS R J, et al. Age of Izu–Bonin–Mariana arc basement[J]. Earth and Planetary Science Letters, 2018, 481(1): 80-90.
[205] TALLING P J, WYNN R B, MASSON D G, et al. Onset of submarine debris flow deposition far from original giant landslide[J]. Nature, 2007, 450(7169): 541-544.
[206] MILLER K G, KOMINZ M A, BROWNING J V, et al. The phanerozoic record of global sea-level change[J]. Science, 2005, 310(5752): 1293-1298.
[207] 庞雄, 陈长民, 邵磊, 等. 白云运动: 南海北部渐新统—中新统重大地质事件及其意义[J]. 地质论评, 2007, 53(2): 145-151.
[208] ZHANG Y G, JI J, BALSAM W L, et al. High resolution hematite and goethite records from ODP 1143, South China Sea: Co-evolution of monsoonal precipitation and El Niño over the past 600,000 years[J]. Earth and Planetary Science Letters, 2007, 264(1-2): 136-150.
[209] CLIFT P D, WAN S, BLUSZTAJN J. Reconstructing chemical weathering, physical erosion and monsoon intensity since 25 Ma in the northern South China Sea: a review of competing proxies[J]. Earth-Science Reviews, 2014, 130(1): 86-102.
[210] LIU C, STOCKLI D F, CLIFT P D, et al. Geochronological and geochemical characterization of paleo-rivers deposits during rifting of the South China Sea[J]. Earth and Planetary Science Letters, 2022, 584(1): 117427.
[211] WANG P, CLEMENS S, BEAUFORT L, et al. Evolution and variability of the Asian monsoon system: state of the art and outstanding issues[J]. Quaternary Science Reviews, 2005, 24(5-6): 595-629.
[212] XU Z, LI T, WAN S, et al. Evolution of East Asian monsoon: Clay mineral evidence in the western Philippine Sea over the past 700 kyr[J]. Journal of Asian Earth Sciences, 2012, 60(1): 188-196.
[213] LIU Z, ZHAO Y, COLIN C, et al. Chemical weathering in Luzon, Philippines from clay mineralogy and major-element geochemistry of river sediments[J]. Applied Geochemistry, 2009, 24(11): 2195-2205.
[214] LIU W, GAI C, FENG W, et al. Coeval Evolution of the Eastern Philippine Sea Plate and the South China Sea in the Early Miocene: Paleomagnetic and Provenance Constraints From ODP Site 1177[J]. Geophysical Research Letters, 2021, 48(14): e2021GL093916.
[215] ZHAO M, SIBUET J C, WU J. Intermingled fates of the South China Sea and Philippine Sea plate[J]. National Science Review, 2019, 6(5): 886-890.
[216] POWNALL J M, LISTER G S, SPAKMAN W. Reconstructing subducted oceanic lithosphere by “reverse‐engineering” slab geometries: The northern Philippine Sea Plate[J]. Tectonics, 2017, 36(9): 1814-1834.
[217] ZHANG G L, LUO Q, ZHAO J, et al. Geochemical nature of sub-ridge mantle and opening dynamics of the South China Sea[J]. Earth and Planetary Science Letters, 2018, 489(1): 145-155.
[218] HICKEY-VARGAS R. Origin of the Indian Ocean-type isotopic signature in basalts from Philippine Sea plate spreading centers: An assessment of local versus large-scale processes[J]. Journal of Geophysical Research, 1998, 103(B9): 20963-20979.
[219] NICHOLS G, HALL R. History of the Celebes Sea Basin based on its stratigraphic and sedimentological record[J]. Journal of Asian Earth Sciences, 1999, 17(1-2): 47-59.
[220] TAPPONNIER P, PELTZER G, LE DAIN A Y, et al. Propagating extrusion tectonics in Asia: new insights from simple experiments with plasticine.[J]. Geology, 1982, 10(12): 611-616.
[221] 孙卫东, 林秋婷, 张丽鹏, 等. 跳出南海看南海——新特提斯洋闭合与南海的形成演化[J]. 岩石学报, 2018, 034(012): 3467-3478.
[222] KARIG D E. Origin and development of marginal basins in the western Pacific[J]. Journal of Geophysical Research, 1971, 76(11): 2542-2561.
[224] FLOWER M, TAMAKI K, HOANG N. Mantle extrusion: a model for dispersed volcanism and Dupal-Like asthenosphere in East Asia and the western Pacific[M]//Flower M F J, Chung S L, Lo C H, et al. Mantle Dynamics and Plate Interactions in East Asia, Volume 27. Washington: AGU, 1998: 67-88.
[225] LIAO R, ZHU H, LI C, et al. Geochemistry of mantle source during the initial expansion and its implications for the opening of the South China Sea[J]. Marine Geology, 2022, 447(1): 106798.
[226] LIANG H-Y, CAMPBELL I H, ALLEN C M, et al. The age of the potassic alkaline igneous rocks along the Ailao Shan–Red River shear zone: implications for the onset age of left-lateral shearing[J]. The Journal of geology, 2007, 115(2): 231-242.
[227] YU M, YAN Y, HUANG C, et al. Opening of the South China Sea and upwelling of the Hainan plume[J]. Geophysical Research Letters, 2018, 45(6): 2600-2609.
[228] 黄小龙, 徐义刚, 杨帆. 南海玄武岩: 扩张洋脊与海山[J]. 科技导报, 2020, 38(18): 46-51.
[229] 陈凌, 王旭, 梁晓峰, 等. 俯冲构造 vs. 地幔柱构造——板块运动驱动力探讨[J]. 中国科学: 地球科学, 2020, 50(4): 501-514.
[230] ANDERSON D L. Top-down tectonics?[J]. Science, 2001, 293(5537): 2016-2018.
[231] CONRAD C P, LITHGOW‐BERTELLONI C. The temporal evolution of plate driving forces: Importance of “slab suction” versus “slab pull” during the Cenozoic [J]. Journal of Geophysical Research: Solid Earth, 2004, 109(B10): 1-14.
[232] WILSON J. Evidence from islands on the spreading of ocean floors[J]. Nature, 1963, 197(4867): 536-538.
[233] WILSON J T. Mantle plumes and plate motions[J]. Tectonophysics, 1973, 19(2): 149-164.
[234] MORGAN W J. Convection plumes in the lower mantle[J]. Nature, 1971, 230(5288): 42-43.
[235] LEI C, ALVES T M, REN J, et al. Depositional architecture and structural evolution of a region immediately inboard of the locus of continental breakup (Liwan Sub-basin, South China Sea)[J]. Geological Society of America Bulletin, 2019, 131(1): 1059-1074.
[236] PENG D, LIU L, HU J, et al. Formation of East Asian Stagnant Slabs Due To a Pressure‐Driven Cenozoic Mantle Wind Following Mesozoic Subduction[J]. Geophysical Research Letters, 2021, 48(18): e2021GL094638.
修改评论