中文版 | English
题名

基于古地磁和物源分析的南海与菲律宾海协同演化研究

其他题名
CO-EVOLUTION STUDY OF THE SOUTH CHINA SEA AND THE PHILIPPINE SEA BASED ON THE PALEOMAGNETIC AND PROVENANCE ANALYSIS
姓名
姓名拼音
LIU Wei
学号
11849585
学位类型
博士
学位专业
083002 环境工程
学科门类/专业学位类别
08 工学
导师
刘青松
导师单位
海洋科学与工程系
论文答辩日期
2022-10-21
论文提交日期
2022-12-29
学位授予单位
哈尔滨工业大学
学位授予地点
哈尔滨
摘要

新生代以来,东亚及邻近海域发生了重大构造与环境变化。南海和菲律宾海地理位置十分独特,位于欧亚板块、太平洋板块和澳大利亚板块的交汇区域,研究其协同构造演化不仅对东南亚和西太平洋地区的古环境研究具有重大意义,而且是深入理解该区矿产资源分布和边缘海形成机制等重大地学问题的基础。

随着国际大洋钻探计划在南海与菲律宾海的开展,基于在这两个海盆获取的海底钻探资料,前人构建了诸多南海与菲律宾海的演化模型。但以往的研究偏重在南海或者菲律宾海单一海盆,缺少对二者协同演化关系进行系统探索。因此,也就无法准确地理解南海与菲律宾海的古地理格局,更无法深入理解该区演化的深部动力学机制。

为了解决这一难题,本论文对菲律宾海四国盆地沉积年龄最老的ODP 1177孔进行了系统的古地磁学和物源研究,通过与南海同时期的古纬度和物源信息进行对比,厘定了菲律宾海四国盆地和南海的协同扩张以及分离过程。

古地磁学方法可确定板块的古地理位置。首先,对ODP 1177孔进行岩石磁学分析。通过磁化率随温度变化曲线(χ-T曲线)、磁滞回线、等温剩磁获得曲线(IRM曲线)、一阶反转曲线图(FORC图),综合揭示了该孔的主要载磁矿物为磁铁矿,部分层位还含有赤铁矿。这些磁性矿物可以有效地记录古地磁信息。其次,对98块沉积样品进行系统的交变退磁,其中51块样品获得了可靠的特征剩磁倾角。最后,基于以上数据获得了ODP 1177孔~20 Ma(Million years ago-百万年前)以来的古纬度:16.0°±4.5°N (20.3 Ma)、17.1°±3.8°N (17.0 Ma)、19.4°±4.0°N (13.5 Ma)、20.1°±3.5°N (9.2 Ma)。南海形成以来,华南地块的古纬度相对稳定。因此,南海北部磁异常条带的位置可作为地质历史时期南海扩张中心的位置。其中北部磁异常条带6a形成的时代也恰好在~20 Ma,其东缘的纬度约为16.0°N, 与菲律宾海四国盆地同时期的古纬度相当。这一结果支持前人提出的南海与菲律宾海四国盆地在~20 Ma时靠得较近的古地理重建模型。

利用碎屑锆石U-Pb定年、主微量元素分析、Sr-Nd同位素分析以及磁性矿物示踪等方法,对ODP 1177孔浊积粉砂岩和泥岩的物源进行了系统研究。锆石U-Pb定年结果显示该孔18.6 Ma沉积的浊积粉砂岩的锆石年龄谱与珠江口同时代地层的锆石年龄谱最为一致,指示其物源来自于珠江的远源供给,与南海的物源一致。而在15.4 Ma,ODP 1177孔的浊积岩中有来自长江的物源,表明18.6-15.4 Ma之间物源发生重大转换。进一步分析表明,22-14 Ma期间泥岩的主微量元素、Nd同位素以及磁性矿物参数(L-ratio、S-ratio、χARM/SIRM、P425 nm)均在~16.5 Ma出现一个转折点。利用赤铁矿(Hm)和针铁矿(Gt)的含量比值参数Hm/Gt作为古气候环境干旱湿润程度的代用指标,排除了古气候环境对上述地球化学参数和磁性矿物参数的控制作用。因此,ODP 1177孔物源的转换时间可较为精准地厘定在~16.5 Ma。Sr-Nd同位素分布特征则进一步指示~16.5 Ma之前ODP 1177孔的泥岩物源来自珠江和伊豆-小笠原岛弧,之后转变为长江和伊豆-小笠原岛弧物质的混合。

通过以上古地磁和物源分析,结合南海与菲律宾海四国盆地的形成时代、洋壳展布、基底玄武岩特征以及周缘板块的约束等一系列地质证据,构建了南海与菲律宾海协同演化的新模型:南海与菲律滨海四国盆地在~20 Ma乃至两个盆地形成之初 (33-30 Ma) 就处于同一个海底扩张系统,具有地质上的亲缘性。在23/20 Ma,澳大利亚板块与东南亚地块发生碰撞,导致了菲律宾海四国盆地与南海开始发生分离。在~16.5 Ma之前,两个盆地未完全分离,四国盆地接受来自珠江和伊豆-小笠原岛弧的联合供源;~16.5 Ma之后,两个盆地彻底分离,四国盆地开始接受来自长江和伊豆-小笠原岛弧的混合供源。这一新模型,澄清了现今在地理上已经独立的南海与菲律宾海四国盆地的地质协同演化历史。一方面能解释南海“东宽西窄”和菲律宾海四国盆地“北宽南窄”这一地质现象,另一方面也能解释南海在~23 Ma前后扩张方向由近N-S向转变到NNW-SSE向。

综上所述,本文取得了以下三点创新认识。一是获取了菲律宾海四国盆地最老沉积钻孔ODP 1177孔的古纬度数据,为前人提出的南海在~20 Ma靠近菲律宾海四国盆地的古地理重建模型提供了古地磁证据。二是识别了前人在ODP 1177孔中未发现的来自珠江的沉积物源,并发现了前人未察觉到的~16.5 Ma这一物源转换时间。三是建立了南海与菲律宾海协同演化的新模型,揭示了南海在~20 Ma乃至形成之初的33-30 Ma就与菲律宾海四国盆地连在一起协同扩张。本文提出的这一新模型对加深东南亚以及西太平洋地区构造古地理环境的认识具有重要科学意义。

关键词
语种
中文
培养类别
联合培养
入学年份
2018
学位授予年份
2022-12
参考文献列表

[1] 朱日祥, 侯增谦, 郭正堂, 等. 宜居地球的过去, 现在与未来——地球科学发展战略概要[J]. 科学通报, 2021, 66(35): 4485-4490.
[2] HALL R. Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: Computer-based reconstructions, model and animations[J]. Journal of Asian Earth Sciences, 2002, 20(4): 353-431.
[3] ZAHIROVIC S, SETON M, MÜLLER R D. The Cretaceous and Cenozoic tectonic evolution of Southeast Asia[J]. Solid Earth, 2014, 5(1): 227-273.
[4] LALLEMAND S. Philippine Sea Plate inception, evolution, and consumption with special emphasis on the early stages of Izu-Bonin-Mariana subduction[J]. Progress in Earth and Planetary Science, 2016, 3(1) : 1-27.
[5] WU J, SUPPE J, LU R, et al. Philippine Sea and East Asian plate tectonics since 52 Ma constrained by new subducted slab reconstruction methods[J]. Journal of Geophysical Research: Solid Earth, 2016, 121(6): 4670-4741.
[6] MA P, LIU S, GURNIS M, et al. Slab Horizontal Subduction and Slab Tearing Beneath East Asia[J]. Geophysical Research Letters, 2019, 46(10): 5161-5169.
[7] QUEAÑO K L, YUMUL G P, MARQUEZ E J, et al. Consumed tectonic plates in Southeast Asia: Markers from the Mesozoic to early Cenozoic stratigraphic units in the northern and central Philippines[J]. Journal of Asian Earth Sciences: X, 2020, 4(1): 1-20.
[8] SIBUET J C, ZHAO M, WU J, et al. Geodynamic and plate kinematic context of South China Sea subduction during Okinawa trough opening and Taiwan orogeny[J]. Tectonophysics, 2021, 817,(1): 229050.
[9] 丁仲礼. 中国大洋钻探二十年[J]. 科学通报, 2018, 63(36): 3866-3867.
[10] REAGAN M K, ISHIZUKA O, STERN R J, et al. Fore-arc basalts and subduction initiation in the Izu-Bonin-Mariana system[J]. Geochemistry Geophysics Geosystems, 2010, 11(3): 1-17.
[11] ARCULUS R J, ISHIZUKA O, BOGUS K A, et al. A record of spontaneous subduction initiation in the Izu–Bonin–Mariana arc[J]. Nature Geoscience, 2015, 8(9): 728-733.
[12] MAUNDER B, PRYTULAK J, GOES S, et al. Rapid subduction initiation and magmatism in the Western Pacific driven by internal vertical forces[J]. Nature Communications, 2020, 11(1): 1874.
[13] CHEN Y, NIU Y, XUE Q, et al. An iron isotope perspective on back-arc basin development: Messages from Mariana Trough basalts[J]. Earth and Planetary Science Letters, 2021, 572(1):117133.
[14] LI H, ARCULUS R J, ISHIZUKA O, et al. Basalt derived from highly refractory mantle sources during early Izu-Bonin-Mariana arc development[J]. Nature Communications, 2021, 12(1): 1723.
[15] 汪品先, 翦知湣. 探索南海深部的回顾与展望[J]. 中国科学: 地球科学, 2019, 49(10): 1590-1606.
[16] LI C-F, XU X, LIN J, et al. Ages and magnetic structures of the South China Sea constrained by deep tow magnetic surveys and IODP Expedition 349[J]. Geochemistry, Geophysics, Geosystems, 2014, 15(12): 4958-4983.
[17] GUAN Q, ZHANG T, TAYLOR B, et al. Ridge jump reorientation of the South China Sea revealed by high‐resolution magnetic data[J]. Terra Nova, 2021, 33(5): 475-482.
[18] HILDE T W C, LEE C-S. Origin and evolution of the West Philippine Basin: A new interpretation[J]. Tectonophysics, 1984, 102(1–4): 85-104.
[19] DESCHAMPS A, LALLEMAND S. The West Philippine Basin: An Eocene to early Oligocene back arc basin opened between two opposed subduction zones[J]. Journal of Geophysical Research: Solid Earth, 2002, 107(B12): 1-24.
[20] ISHIZUKA O, TAYLOR R N, OHARA Y, et al. Upwelling, rifting, and age-progressive magmatism from the Oki-Daito mantle plume[J]. Geology, 2013, 41(9): 1011-1014.
[21] SASAKI T, YAMAZAKI T, ISHIZUKA O. A revised spreading model of the West Philippine Basin[J]. Earth, Planets and Space, 2014, 66(1): 1-9.
[22] OKINO K, OHARA Y, KASUGA S, et al. The Philippine Sea: New survey results reveal the structure and the history of the marginal basins[J]. Geophysical Research Letters, 1999, 26(15): 2287-2290.
[23] SDROLIAS M, ROEST W R, MÜLLER R D. An expression of philippine sea plate rotation: The parece vela and shikoku basins[J]. Tectonophysics, 2004, 394(1–2): 69-86.
[24] YAMAZAKI T, TAKAHASHI M, IRYU Y, et al. Philippine Sea Plate motion since the Eocene estimated from paleomagnetism of seafloor drill cores and gravity cores[J]. Earth, Planets and Space, 2010, 62(6): 495-502.
[25] QUEANO K L, ALI J R, MILSOM J, et al. North Luzon and the Philippine Sea Plate motion model: Insights following paleomagnetic, structural, and age-dating investigations[J]. Journal of Geophysical Research: Solid Earth, 2007, 112(5): B05101.
[26] LEE T Y, LAWVER L A. Cenozoic plate reconstruction of Southeast Asia[J]. Tectonophysics, 1995, 251(1-4): 85-138.
[27] ISOZAKI Y, AOKI K, NAKAMA T, et al. New insight into a subduction-related orogen: A reappraisal of the geotectonic framework and evolution of the Japanese Islands[J]. Gondwana Research, 2010, 18(1): 82-105.
[28] RAIMBOURG H, FAMIN V, PALAZZIN G, et al. Tertiary evolution of the Shimanto belt (Japan): A large-scale collision in Early Miocene[J]. Tectonics, 2017, 36(7): 1317-1337.
[29] 金钟, 李全兴, 杨华, 等. 南中国海西南部海盆海山古地磁研究[J]. 海洋通报, 2002, 21(2): 41-48.
[30] 金钟, 徐世浙, 李全兴. 南海海盆海山古地磁及海盆的形成演化[J]. 海洋学报, 2004, 26(5): 83-93.
[31] TAYLOR B, HAYES D E. Origin and history of the South China Sea basin[M]//Hayes D E. Tectonic and Geologic Evolution of Southeast Asian Seas and Islands: Part 2. Washington: AGU, 1983: 23-56.
[32] BEN-AVRAHAM Z, UYEDA S. The evolution of the China Basin and the mesozoic paleogeography of Borneo[J]. Earth and Planetary Science Letters, 1973, 18(2): 365-376.
[33] TAYLOR B, HAYES D E. The tectonic evolution of the South China Basin[J]. 1980, 23: 89-104.
[34] 陈圣源. 南海磁力异常图[C]//何廉声. 南海地质地球物理图集. 广州: 广东地图出版社, 1987: 1-113.
[35] 吕文正, 柯长志, 吴声迪, 等. 南海中央海盆条带磁异常特征及构造演化[J]. 海洋学报, 1987, 9(1): 69-78.
[36] 姚伯初, 曾维军. 中美合作调研南海地质专报[M]. 武汉: 中国地质大学出版社, 1994.
[37] BRIAIS A, PATRIAT P, TAPPONNIER P. Updated interpretation of magnetic anomalies and seafloor spreading stages in the south China Sea: Implications for the Tertiary tectonics of Southeast Asia[J]. Journal of Geophysical Research: Solid Earth, 1993, 98(B4): 6299-6328.
[38] HAYES D E, NISSEN S S, BUHL P, et al. Throughgoing crustal faults along the northern margin of the South China Sea and their role in crustal extension[J]. Journal of Geophysical Research, 1995, 100(B11): 22435-22446.
[39] BRIAIS A, TAPPONNIER P, PAUTOT G. Constraints of Sea Beam data on crustal fabrics and seafloor spreading in the South China Sea[J]. Earth and Planetary Science Letters, 1989, 95(3-4): 307-320.
[40] HSU S-K, YEH Y, DOO W-B, et al. New Bathymetry and Magnetic Lineations Identifications in the Northernmost South China Sea and their Tectonic Implications[J]. Marine Geophysical Researches, 2004, 25(1): 29-44.
[41] LI C-F, ZHOU Z, LI J, et al. Structures of the northeasternmost South China Sea continental margin and ocean basin: geophysical constraints and tectonic implications[J]. Marine Geophysical Researches, 2007, 28(1): 59-79.
[42] LI C-F, SONG T. Magnetic recording of the Cenozoic oceanic crustal accretion and evolution of the South China Sea basin[J]. Chinese Science Bulletin, 2012, 57(24): 3165-3181.
[43] BARCKHAUSEN U, ENGELS M, FRANKE D, et al. Evolution of the South China Sea: Revised ages for breakup and seafloor spreading[J]. Marine and Petroleum Geology, 2014, 58(1): 599-611.
[44] CHANG J H, LEE T Y, HSU H H, et al. Comment on Barckhausen et al., 2014 - Evolution of the South China Sea: Revised ages for breakup and seafloor spreading[J]. Marine and Petroleum Geology, 2015, 59(1): 676-678.
[45] BARCKHAUSEN U, ENGELS M, FRANKE D, et al. Reply to Chang et al., 2014, Evolution of the South China Sea: Revised ages for breakup and seafloor spreading[J]. Marine and Petroleum Geology, 2015, 59(1): 679-681.
[46] CANDE S C, KENT D V. Revised calibration of the geomagnetic polarity timescale for the Late Cretaceous and Cenozoic[J]. Journal of Geophysical Research, 1995, 100(B4): 6093-6095.
[47] OGG J G. Geomagnetic polarity time scale[M]//Gradstein F M, Ogg J G, Schmitz M D, et al. Geologic Time Scale 2020. Amsterdam: Elsevier, 2020: 159-192.
[48] CLIFT P, LEE J IL, CLARK M K, et al. Erosional response of South China to arc rifting and monsoonal strengthening; a record from the South China Sea[J]. Marine Geology, 2002, 184(3–4): 207-226.
[49] 吴国瑄, 覃军干, 茅绍智. 南海深海相渐新统孢粉记录[J]. 科学通报, 2003, 48(17): 1868-1871.
[50] 邵磊, 庞雄, 陈长民, 等. 南海北部渐新世末沉积环境及物源突变事件[J]. 中国地质, 2007, 34(6): 1022-1031.
[51] 唐松, 邵磊, 吴国瑄, 等. 南海北部 ODP 1148 站沉积物特征及其来源[J]. 海洋地质动态, 2009, 25(7): 7-13.
[52] LI X, WEI G, SHAO L, et al. Geochemical and Nd isotopic variations in sediments of the South China Sea: a response to Cenozoic tectonism in SE Asia[J]. Earth and Planetary Science Letters, 2003, 211(3-4): 207-220.
[53] 蒋恒毅, 李安春, 万世明. 3000 万年以来南海沉积矿物组成及其地质意义[J]. 海洋科学集刊, 2006, 47(1): 83-94.
[54] 李安春, 黄杰, 蒋恒毅, 等. 渐新世以来南海北部陆坡区沉积演化及其对构造的响应[J]. 地球物理学报, 2011, 54(12): 3233-3245.
[55] WEI G, LIU Y, MA J, et al. Nd, Sr isotopes and elemental geochemistry of surface sediments from the South China Sea: Implications for Provenance Tracing[J]. Marine Geology, 2012, 319–322(1): 21-34.
[56] SHAO L, CAO L, PANG X, et al. Detrital zircon provenance of the P aleogene syn‐rift sediments in the northern S outh C hina Sea[J]. Geochemistry, Geophysics, Geosystems, 2016, 17(2): 255-269.
[57] WANG C, WEN S, LIANG X, et al. Detrital zircon provenance record of the oligocene Zhuhai Formation in the Pearl River Mouth Basin, northern South China sea[J]. Marine and Petroleum Geology, 2018, 98(1): 448-461.
[58] CHEN S, QIAO P, ZHANG H, et al. Geochemical characteristics of Oligocene-Miocene sediments from the deepwater area of the northern South China Sea and their provenance implications[J]. Acta Oceanologica Sinica, 2018, 37(2): 35-43.
[59] WANG W, YANG X, BIDGOLI T S, et al. Detrital zircon geochronology reveals source-to-sink relationships in the Pearl River Mouth Basin, China[J]. Sedimentary geology, 2019, 388(1): 81-98.
[60] TANG X, YANG S, HU S. Provenance of the Paleogene sediments in the Pearl River Mouth Basin, northern South China Sea: Insights from zircon U-Pb and fission track double dating[J]. Journal of Asian Earth Sciences, 2020, 200(1): 104494.
[61] CAO L, SHAO L, QIAO P, et al. Early Miocene birth of modern Pearl River recorded low-relief, high-elevation surface formation of SE Tibetan Plateau[J]. Earth and Planetary Science Letters, 2018, 496(1): 120-131.
[62] WANG C, LIANG X, FOSTER D A, et al. Detrital zircon ages: A key to unraveling provenance variations in the eastern Yinggehai–Song Hong Basin, South China Sea[J]. AAPG Bulletin, 2019, 103(7): 1525-1552.
[63] 黄奇瑜. 台湾岛的年龄[J]. 中国科学: 地球科学, 2017, 47(4): 394-405.
[64] LAN Q, YAN Y, HUANG C, et al. Tectonics, topography, and river system transition in E ast T ibet: Insights from the sedimentary record in Taiwan[J]. Geochemistry, Geophysics, Geosystems, 2014, 15(9): 3658-3674.
[65] ZHANG X, YAN Y, HUANG C-Y, et al. Provenance analysis of the Miocene accretionary prism of the Hengchun Peninsula, southern Taiwan, and regional geological significance[J]. Journal of Asian Earth Sciences, 2014, 85(1): 26-39.
[66] DENG K, YANG S, LI C, et al. Detrital zircon geochronology of river sands from Taiwan: Implications for sedimentary provenance of Taiwan and its source link with the east China mainland[J]. Earth-Science Reviews, 2017, 164(1): 31-47.
[67] XU Y. Comment on “Detrital zircon geochronology of river sands from Taiwan: Implications for sedimentary provenance of Taiwan and its source link with the east China mainland” by Deng K, Yang SY, Li C, Su N, Bi L, Chang YP, Chang SC.[Earth-Science Reviews 164 (2017),31-47][J]. Earth-Science Reviews, 2017, 168(1): 232-234.
[68] DENG K, YANG S, BI L. Reply to comment by Yonghang Xu on “Detrital zircon geochronology of river sands from Taiwan: Implications for sedimentary provenance of Taiwan and its source link with the east China mainland”[J]. Earth-Science Reviews, 2017, 168(1): 235-239.
[69] LOUDEN K E. Paleomagnetism of DSDP sediments, phase shifting of magnetic anomalies, and rotations of the West Philippine Basin[J]. Journal of Geophysical Research, 1977, 82(20): 2989-3002.
[70] KINOSHITA H. Paleomagnetism of sediment cores from Deep Sea Drilling Project Leg 58, Philippine Sea[M]//Klein G deV, Kobayashi K, Chamley H, et al. Initial Reports of the Deep Sea Drilling Project, Volume 58. Washington: US Government Printing Office, 1980: 765-768.
[71] KEATING B. Paleomagnetic study of sediments from deep sea drilling project leg 59[M]//Kroenke L, Scott R, Balshaw K, et al. Initial Reports of the Deep Sea Drilling Project, Volume 59. Washington: US Government Printing Office, 1981: 523-532.
[72] KEATING B, HERRERO E. Paleomagnetic studies of basalts and andesites from deep sea drilling project leg 59[M]//Kroenke L, Scott R, Balshaw K, et al. Initial Reports of the Deep Sea Drilling Project, Volume 59. Washington: US Government Printing Office, 1981: 533-543.
[73] BLEIL U. Paleomagnetism of deep sea drilling project Leg 60 sediments and igneous rocks from the Mariana region[M]//Hussong D M, Uyeda S, Blanchet R, et al. Initial Reports of the Deep Sea Drilling Project, Volume 60. Washington: US Government Printing Office, 1982: 855-873.
[74] HASTON R B, STOKKING L B, ALI J. Paleomagnetic data from Holes 782A, 784A, and 786A, Leg 125[M]//Fryer P, Pearce J A, Stokking L B, et al. Proceedings of the Ocean Drilling Program, Scientific Results, Volume 125. Texas: Ocean Drilling Program, 1992: 535-545.
[75] KOYAMA M, CISOWSKI S M, PEZARD P. Paleomagnetic evidence for northward drift and clockwise rotation of the Izu-Bonin Forearc since the early Oligocene[M]//Taylor B, Fujioka K, Janecek T R, et al. Proceedings of the Ocean Drilling Program, Scientific Results, Volume 126. Texas: Ocean Drilling Program, 1992: 353-370.
[76] RICHTER C, ALI J R. Philippine Sea Plate motion history: Eocene-Recent record from ODP Site 1201, central West Philippine Basin[J]. Earth and Planetary Science Letters, 2015, 410(1): 165-173.
[77] YAMAZAKI T, CHIYONOBU S, ISHIZUKA O, et al. Rotation of the Philippine Sea plate inferred from paleomagnetism of oriented cores taken with an ROV-based coring apparatus[J]. Earth, Planets and Space, 2021, 73(1): 1-10.
[78] HALL R, FULLER M, ALI J R, et al. The Philippine sea plate: Magnetism and reconstructions[J]. Geophysical Monograph Series, 1995, 88(1): 371-404.
[79] KODAMA K, KEATING B H, HELSLEY C E. Paleomagnetism of the Bonin Islands and its tectonic significance[J]. Tectonophysics, 1983, 95(1-2): 25-42.
[80] HASTON R B, FULLER M. Paleomagnetic data from the Philippine Sea plate and their tectonic significance[J]. Journal of Geophysical Research, 1991, 96(B4): 6073-6098.
[81] HASTON R, FULLER M, SCHMIDTKE E. Paleomagnetic results from Palau, West Caroline Islands: A constraint on Philippine Sea plate motion[J]. Geology, 1988, 16(7): 654-657.
[82] HALL R, ALI J R, ANDERSON C D. Cenozoic motion of the Philippine Sea Plate: Palaeomagnetic evidence from eastern Indonesia[J]. Tectonics, 1995, 14(5): 1117-1132.
[83] HALL R, ALI J R, ANDERSON C D, et al. Origin and motion history of the Philippine Sea Plate[J]. Tectonophysics, 1995, 251(1-4): 229-250.
[84] HALL R. Australia–SE Asia collision: plate tectonics and crustal flow[J]. Geological Society London Special Publications, 2011, 355(1): 75-109.
[85] 赵西西, 杨逸凯, 谌微微等. 菲律宾吕宋岛与菲律宾海板块在新生代的构造亲缘关系: 古地磁学和锆石U-Pb年代学证据[C]//同济大学海洋地质国家重点实验室. 第六届地球系统科学大会会议手册及摘要集, 上海: 同济大学出版社, 2021: 516-517.
[86] LOUDEN K E. Magnetic anomalies in the West Philippine Basin[M]//Sutton G H, Manghnani M H, Moberly R, et al. The Geophysics of the Pacific Ocean Basin and Its Margin, Volume 19. Washington: AGU,1976: 253-267.
[87] MROZOWSKI C L, LEWIS S D, HAYES D E. Complexities in the tectonic evolution of the West Philippine Basin[J]. Tectonophysics, 1982, 82(1): 1-24.
[88] SHIH T. Marine magnetic anomalies from the western Philippine Sea: implications for the evolution of marginal basins[M]//Hayes D E. The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands, Volume 23. Washington: AGU, 1980: 49-75.
[89] SETON M, MÜLLER R D, ZAHIROVIC S, et al. Global continental and ocean basin reconstructions since 200Ma[J]. Earth-Science Reviews, 2012, 113(3-4): 212-270.
[90] DOO W-B, HSU S-K, YEH Y-C, et al. Age and tectonic evolution of the northwest corner of the West Philippine Basin[J]. Marine Geophysical Researches, 2015, 36(2): 113-125.
[91] MROZOWSKI C L, HAYES D E. The evolution of the Parece Vela Basin, eastern Philippine Sea[J]. Earth and Planetary Science Letters, 1979, 46(1): 49-67.
[92] KASUGA S, OHARA Y. A new model of back-arc spreading in the Parece Vela Basin, northwest Pacific margin[J]. Island Arc, 1997, 6(3): 316-326.
[93] OKINO K, KASUGA S, OHARA Y. A New Scenario of the Parece Vela Basin Genesis[J]. Marine Geophysical Researches, 1998, 20(1): 21-40.
[94] WATTS A B, WEISSEL J K. Tectonic history of the Shikoku marginal basin[J]. Earth and Planetary Science Letters, 1975, 25(3): 239-250.
[95] KOBAYASHI K, NAKADA M. Magnetic anomalies and tectonic evolution of the shikoku inter-arc basin[J]. Journal of Physics of the Earth, 1978, 26(S1): S391-S402.
[96] OKINO K, SHIMAKAWA Y, NAGAOKA S. Evolution of the Shikoku Basin[J]. Journal of Geomagnetism and Geoelectricity, 1994, 46(6): 463-479.
[97] SHIPBOARD SCIENTIFIC PARTY. Site 1177[M]//Moore G F, Taira A, Klaus A, et al. Proceedings the Ocean Drilling Program, Initial Reports Volume 190. Texas: Ocean Drilling Program, 1992: 1-91.
[98] UNDERWOOD M B, FERGUSSON C L. Late Cenozoic evolution of the Nankai trench-slope system: Evidence from sand petrography and clay mineralogy[J]. Geological Society Special Publication, 2005, 244(1): 113-129.
[99] CLIFT P D, CARTER A, NICHOLSON U, et al. Zircon and apatite thermochronology of the Nankai Trough accretionary prism and trench, Japan: Sediment transport in an active and collisional margin setting[J]. Tectonics, 2013, 32(3): 377-395.
[100] WANG P, LI Q. Geology of the China Seas[M]. Dordrecht: Springer, 2009.
[101] 李学杰, 王哲, 姚永坚, 等. 南海成因及其演化模式探讨[J]. 中国地质, 2020, 47(5): 1310-1322.
[102] 张功成, 贾庆军, 王万银, 等. 南海构造格局及其演化[J]. 地球物理学报, 2018, 61(10): 4194-4215.
[103] 李三忠, 索艳慧, 刘鑫, 等. 南海的基本构造特征与成因模型: 问题与进展及论争[J]. 海洋地质与第四纪地质, 2012, 32(6): 35-53.
[104] LI F, SUN Z, YANG H. Possible spatial distribution of the Mesozoic volcanic arc in the present‐day South China Sea continental margin and its tectonic implications[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(8): 6215-6235.
[105] ZHOU D, RU K, CHEN H. Kinematics of Cenozoic extension on the South China Sea continental margin and its implications for the tectonic evolution of the region[J]. Tectonophysics, 1995, 251(1–4): 161-177.
[106] YE Q, MEI L, SHI H, et al. The Late Cretaceous tectonic evolution of the South China Sea area: An overview, and new perspectives from 3D seismic reflection data[J]. Earth-science reviews, 2018, 187: 186-204.
[107] SUN L, SUN Z, ZHANG Y, et al. Multi-stage carbonate veins at IODP Site U1504 document Early Cretaceous to early Cenozoic extensional events on the South China Sea margin[J]. Marine Geology, 2021, 442(1): 106656.
[108] ZHAO F, ALVES T M, XIA S, et al. Along-strike segmentation of the South China Sea margin imposed by inherited pre-rift basement structures[J]. Earth and Planetary Science Letters, 2020, 530(1): 115862.
[109] LI F, SUN Z, YANG H, et al. Continental interior and edge breakup at convergent margins induced by subduction direction reversal: A numerical modeling study applied to the South China Sea margin[J]. Tectonics, 2020, 39(11): e2020TC006409.
[110] LARSEN H C, MOHN G, NIRRENGARTEN M, et al. Rapid transition from continental breakup to igneous oceanic crust in the South China Sea[J]. Nature Geoscience, 2018, 11(10): 782-789.
[111] WANG P, HUANG C-Y, LIN J, et al. The South China Sea is not a mini-Atlantic: plate-edge rifting vs intra-plate rifting[J]. National Science Review, 2019, 6(5): 902-913.
[112] 林间, 李家彪, 徐义刚, 等. 南海大洋钻探及海洋地质与地球物理前沿研究新突破[J]. 海洋学报, 2019, 41(10): 125-140.
[113] LI C-F, LI J, DING W, et al. Seismic stratigraphy of the central South China Sea basin and implications for neotectonics[J]. Journal of Geophysical Research: Solid Earth, 2015, 120(3): 1377-1399.
[114] WANG Q, ZHAO M, ZHANG H, et al. Crustal velocity structure of the Northwest Sub-basin of the South China Sea based on seismic data reprocessing[J]. Science China Earth Sciences, 2020, 63(11): 1791-1806.
[115] ZHONG L F, CAI G Q, KOPPERS A A P, et al. 40Ar/39Ar dating of oceanic plagiogranite: Constraints on the initiation of seafloor spreading in the South China Sea[J]. Lithos, 2018, 302–303(1): 421-426.
[116] JIAN Z, JIN H, KAMINSKI M A, et al. Discovery of the marine Eocene in the northern South China Sea[J]. National Science Review, 2019, 6(5): 881–885.
[117] SIBUET J C, YEH Y C, LEE C S. Geodynamics of the South China Sea[J]. Tectonophysics, 2016, 692(1): 98-119.
[118] DING W, SUN Z, DADD K, et al. Structures within the oceanic crust of the central South China Sea basin and their implications for oceanic accretionary processes[J]. Earth and Planetary Science Letters, 2018, 488(1): 115-125.
[119] YANG T F, TIEN J, CHEN C-H, et al. Fission-track dating of volcanics in the northern part of the Taiwan-Luzon Arc: eruption ages and evidence for crustal contamination[J]. Journal of Southeast Asian Earth Sciences, 1995, 11(2): 81-93.
[120] SHAO W-Y, CHUNG S-L, CHEN W-S, et al. Old continental zircons from a young oceanic arc, eastern Taiwan: Implications for Luzon subduction initiation and Asian accretionary orogeny[J]. Geology, 2015, 43(6): 479-482.
[121] YU M, YUMUL G P, DILEK Y, et al. Diking of various slab melts beneath forearc spreading center and age constraints of the subducted slab[J]. Earth and Planetary Science Letters, 2022, 579(1): 117367.
[122] 李常珍, 李乃胜, 林美华. 菲律宾海的地势特征[J]. 海洋科学, 2000, 24(6): 47-51.
[123] MIZUNO A, OKUDA Y, NIAGUMO S, et al. Subsidence of the Daito Ridge and Associated Basins, North Philippine Sea[M]//Watkins J, Montadert L, Dickerson P W. Geological and Geophysical Investigations of Continental Margins. Texas: AAPG Memoir, 1979: 1-10.
[124] KLEIN G DE V, KOBAYASHI K. Geological summary of the North Philippine Sea, based on Deep Sea Drilling Project Leg 58 results[M]//Klein G deR, Kobayashi K, Chamley H, et al. Initial Reports of the Deep Sea Drilling Project, Volume 58. Texas: Ocean Drilling Program, 1980: 951-961.
[125] NUR A, BEN‐AVRAHAM Z. Oceanic plateaus, the fragmentation of continents, and mountain building[J]. Journal of Geophysical Research: Solid Earth, 1982, 87(B5): 3644-3661.
[126] QIAN S, ZHANG X, WU J, et al. First identification of a Cathaysian continental fragment beneath the Gagua Ridge, Philippine Sea, and its tectonic implications[J]. Geology, 2021, 49(11): 1332-1336.
[127] KARIG D E. Basin genesis in the Philippine Sea[M]//Karig D E, Ingle J C, Jr, et al. Initial Reports of the Deep Sea Drilling Project, Volume 31. Texas: Ocean Drilling Program,1975: 857-879.
[128] SENO T, MARUYAMA S. Paleogeographic reconstruction and origin of the Philippine Sea[J]. Tectonophysics, 1984, 102(1-4): 53-84.
[129] RANGIN C, JOLIVET L, PUBELLIER M. A simple model for the tectonic evolution of southeast Asia and Indonesia region for the past 43 my[J]. Bulletin de la Société géologique de France, 1990, 6(6): 889-905.
[130] UYEDA S, BEN-AVRAHAM Z. Origin and development of the Philippine Sea[J]. Nature Physical Science, 1972, 240(104): 176-178.
[131] HILDE T W C, UYEDA S, KROENKE L. Evolution of the western Pacific and its margin[J]. Tectonophysics, 1977, 38(1-2): 145-165.
[132] YAMAZAKI T, SEAMA N, OKINO K, et al. Spreading process of the northern Mariana Trough: Rifting-spreading transition at 22°N[J]. Geochemistry Geophysics Geosystems, 2003, 4(9): 1-18.
[133] NIITSUMA N. Collision tectonics in the South Fossa magna, central Japan[J]. Modern Geology, 1989, 14(1): 3-18.
[134] AMANO K. Multiple collision tectonics of the South Fossa Magna in Central Japan[J]. Modern Geology, 1991, 15(1): 315-329.
[135] SAITO S, ARIMA M, NAKAJIMA T, et al. Formation of distinct granitic magma batches by partial melting of hybrid lower crust in the Izu arc collision zone, central Japan[J]. Journal of Petrology, 2007, 48(9): 1761-1791.
[136] MAHONY S H, WALLACE L M, MIYOSHI M, et al. Volcano-tectonic interactions during rapid plate-boundary evolution in the Kyushu region, SW Japan[J]. Bulletin, 2011, 123(11-12): 2201-2223.
[137] 中国地质调查局. 中国地质调查局地质调查技术标准: DD2006-4古地磁测试技术要求[S]. 2006.
[138] ZONG K, KLEMD R, YUAN Y, et al. The assembly of Rodinia: The correlation of early Neoproterozoic (ca. 900 Ma) high-grade metamorphism and continental arc formation in the southern Beishan Orogen, southern Central Asian Orogenic Belt (CAOB)[J]. Precambrian Research, 2017, 290(1): 32-48.
[139] HU P, JIANG Z, LIU Q, et al. Estimating the concentration of aluminum‐substituted hematite and goethite using diffuse reflectance spectrometry and rock magnetism: Feasibility and limitations[J]. Journal of Geophysical Research: Solid Earth, 2016, 121(6): 4180-4194.
[140] TARLING D, HROUDA F. Magnetic anisotropy of rocks[M]. Suffolk: St Edmundsbury Press, 1993.
[141] LIU Y, GAO S, HU Z, et al. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths[J]. Journal of Petrology, 2010, 51(1–2) : 537-571.
[142] LIU Y, HU Z, GAO S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257(1–2): 34-43.
[143] COMPSTON W, WILLIAMS I S, KIRSCHVINK J L, et al. Zircon U-Pb ages for the Early Cambrian time-scale[J]. Journal of the Geological Society, 1992, 149(2): 171-184.
[144] 李献华, 刘颖. 硅酸盐岩石化学组成的 ICP-AES 和 ICP-MS 准确测定: 酸溶与碱熔分解样品方法的对比[J]. 地球化学, 2002, 31(3): 289-294.
[145] 刘颖, 刘海臣, 李献华. 用 ICP-MS 准确测定岩石样品中的 40 余种微量元素[J]. 地球化学, 1996, 25(6): 552-558.
[146] TAUXE L. Essentials of Paleomagnetism[M]. San Diego: University of California Press, 2010.
[147] EVANS D A D. Proterozoic low orbital obliquity and axial-dipolar geomagnetic field from evaporite palaeolatitudes[J]. Nature, 2006, 444(7115): 51-55.
[148] VAN DER VOO R. The reliability of paleomagnetic data[J]. Tectonophysics, 1990, 184(1): 1-9.
[149] MEERT J G, PIVARUNAS A F, EVANS D A D, et al. The magnificent seven: a proposal for modest revision of the quality index[J]. Tectonophysics, 2020, 790(1): 228549.
[150] MCFADDEN P L, MCELHINNY M W. Classification of the reversal test in palaeomagnetism[J]. Geophysical Journal International, 1990, 103(3): 725-729.
[151] HESLOP D, ROBERTS A P. Revisiting the paleomagnetic reversal test: A Bayesian hypothesis testing framework for a common mean direction[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(9): 7225-7236.
[152] PIKE C R, ROBERTS A P, DEKKERS M J, et al. An investigation of multi-domain hysteresis mechanisms using FORC diagrams[J]. Physics of the Earth and Planetary Interiors, 2001, 126(1-2): 11-25.
[153] WEI W, LIU C, HOU Y, et al. Discovery of a hidden Triassic Arc in the Southern South China Sea: Evidence for the breakaway of a ribbon continent with implications for the evolution of the Western Pacific margin[J]. Terra Nova, 2022, 34(1): 12-19.
[154] 朱日祥, 杨振宇, 马醒华, 等. 中国主要地块显生宙古地磁视极移曲线与地块运动[J]. 中国科学 D 辑, 1998, 28(S1): 1-16.
[155] 吴汉宁, 吕建军, 朱日祥, 等. 扬子地块显生宙古地磁视极移曲线及地块运动特征[J]. 中国科学 D 辑, 1998, 28(S1): 69-78.
[156] COGNÉ J P, BESSE J, CHEN Y, et al. A new late cretaceous to present APWP for Asia and its implications for paleomagnetic shallow inclinations in Central Asia and Cenozoic Eurasian plate deformation[J]. Geophysical Journal International, 2013, 192(3): 1000-1024.
[157] JEONG D, YU Y. Apparent polar wander path for East Asia and implications for paleomagnetic low inclination in sedimentary rocks[J]. Physics of the Earth and Planetary Interiors, 2019, 289(1): 63-72.
[158] 孟俊. 西藏高原晚中生代以来重要构造事件的古地磁学约束[D]. 北京: 中国地质大学(北京), 2013.
[159] TORSVIK T H, VAN DER VOO R, PREEDEN U, et al. Phanerozoic polar wander, palaeogeography and dynamics[J]. Earth-Science Reviews, 2012, 114(3-4): 325-368.
[160] FRISCH W, MESCHEDE M, BLAKEY R C. Plate tectonics: continental drift and mountain building[M]. Berlin: Springer,2010.
[161] LIU J, SHI X, LIU Q, et al. Magnetostratigraphy of a greigite‐bearing core from the South Yellow Sea: Implications for remagnetization and sedimentation[J]. Journal of Geophysical Research: Solid Earth, 2014, 119(10): 7425-7441.
[162] FLINN D. On folding during three-dimensional progressive deformation[J]. Quarterly Journal of the Geological Society, 1962, 118(1-4): 385-428.
[163] LIU Q, DENG C, YU Y, et al. Temperature dependence of magnetic susceptibility in an argon environment: implications for pedogenesis of Chinese loess/palaeosols[J]. Geophysical Journal International, 2005, 161(1): 102-112.
[164] BARRN V, TORRENT J. Evidence for a simple pathway to maghemite in Earth and Mars soils[J]. Geochimica et Cosmochimica Acta, 2002, 66(15): 2801-2806.
[165] DENG C, ZHU R, JACKSON M J, et al. Variability of the temperature-dependent susceptibility of the Holocene eolian deposits in the Chinese Loess Plateau: A pedogenesis indicator[J]. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 2001, 26(11-12): 873-878.
[166] FLORINDO F, ZHU R, GUO B, et al. Magnetic proxy climate results from the Duanjiapo loess section, southernmost extremity of the Chinese loess plateau[J]. Journal of Geophysical Research: Solid Earth, 1999, 104(B1): 645-659.
[167] ROBERTS A P, CUI Y, VEROSUB K L. Wasp‐waisted hysteresis loops: Mineral magnetic characteristics and discrimination of components in mixed magnetic systems[J]. Journal of Geophysical Research: Solid Earth, 1995, 100(B9): 17909-17924.
[168] ARASON P, LEVI S. Maximum likelihood solution for inclination-only data in paleomagnetism[J]. Geophysical Journal International, 2010, 182(2): 753-771.
[169] 吴元保, 郑永飞. 锆石成因矿物学研究及其对 U-Pb 年龄解释的制约[J]. 科学通报, 2004, 49(16): 1589-1604.
[170] CARDONA A, Cordani U G, Ruiz J, et al. U-Pb zircon geochronology and Nd isotopic signatures of the pre-Mesozoic metamorphic basement of the eastern Peruvian Andes: Growth and provenance of a late Neoproterozoic to Carboniferous accretionary orogen on the northwest margin of Gondwana[J]. The journal of Geology, 2009, 117(3): 285-305.
[171] CLIFT P D, ELLAM R M, HINTON R, et al. Pb, Sr and Nd isotopic constraints on the evolving provenance of the Red River[J]. Geochimica et Cosmochimica Acta Supplement, 2008, 72(12): A168.
[172] YAN Y, XIA B, LIN G, et al. Geochemical and Nd isotope composition of detrital sediments on the north margin of the South China Sea: Provenance and tectonic implications[J]. Sedimentology, 2007, 54(1): 1-17.
[173] ROLLINSON H R. Using geochemical data: evaluation, presentation, interpretation[M]. Louden: Routledge, 1993.
[174] 邵磊, 刘志伟, 朱伟林. 陆源碎屑岩地球化学在盆地分析中的应用[J]. 地学前缘, 2000, 7(3): 297-304.
[175] HOLLAND H D. The chemical evolution of the atmosphere and oceans[M]. Princeton: Princeton University Press, 2020.
[176] BHATIA M R, CROOK K A W. Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins[J]. Contributions to mineralogy and petrology, 1986, 92(2): 181-193.
[177] BHATIA M R. Plate tectonics and geochemical composition of sandstones[J]. The Journal of Geology, 1983, 91(6): 611-627.
[178] LIU Q, ROBERTS A P, LARRASOAÑA J C, et al. Environmental magnetism: Principles and applications[J]. Reviews of Geophysics, 2012, 50(4): 1-50.
[179] SCHEINOST A C. Use and Limitations of Second-Derivative Diffuse Reflectance Spectroscopy in the Visible to Near-Infrared Range to Identify and Quantify Fe Oxide Minerals in Soils[J]. Clays and Clay Minerals, 1998, 46(5): 528-536.
[180] GAI C, LIU Q, ROBERTS A P, et al. East Asian monsoon evolution since the late Miocene from the South China Sea[J]. Earth and Planetary Science Letters, 2020, 530(1): 115960.
[181] BLOEMENDAL J, KING J W, HALL F R, et al. Rock magnetism of Late Neogene and Pleistocene deep‐sea sediments: Relationship to sediment source, diagenetic processes, and sediment lithology[J]. Journal of Geophysical Research: Solid Earth, 1992, 97(B4): 4361–4375.
[182] LIU Q, ROBERTS A P, TORRENT J, et al. What do the HIRM and S -ratio really measure in environmental magnetism?[J]. Geochemistry, Geophysics, Geosystems, 2007, 8(9): 1-10.
[183] ZHANG Y G, JI J, BALSAM W L, et al. High resolution hematite and goethite records from ODP 1143, South China Sea: Co-evolution of monsoonal precipitation and El Niño over the past 600,000 years[J]. Earth and Planetary Science Letters, 2007, 264(1-2): 136-150.
[184] KOBAYASHI K. Subsidence of the Shikoku back-arc basin[J]. Tectonophysics, 1984, 102(1-4): 105-117.
[185] CHEN Y, MENG J, LIU H, et al. Detrital zircons record the evolution of the Cathaysian Coastal Mountains along the South China margin[J]. Basin Research, 2022, 34(2): 688-701.
[186] ZHENG H, CLIFT P D, HE M, et al. Formation of the First Bend in the late Eocene gave birth to the modern Yangtze River, China[J]. Geology, 2021, 49(1): 35-39.
[187] ZHENG H, CLIFT P D, WANG P, et al. Pre-miocene birth of the Yangtze River[J]. Proceedings of the National Academy of Sciences, 2013, 110(19): 7556-7561.
[188] ZHANG Z, DALY J S, TYRRELL S, et al. Formation of the three Gorges (Yangtze River) no earlier than 10 Ma[J]. Earth-Science Reviews, 2021, 216(1): 103601.
[189] SUN X, TIAN Y, KUIPER K F, et al. No Yangtze River prior to the late Miocene: Evidence from detrital muscovite and K‐feldspar 40Ar/ 39Ar geochronology[J]. Geophysical Research Letters, 2021, 48(5): e2020GL089903.
[190] LI Y, ZHAO J, WEI C, et al. Cadmium and clay mineral analysis of late Pliocene–Pleistocene deposits from Jianghan Basin, central China: Implications for sedimentary provenance and evolution of the Yangtze River[J]. Quaternary International, 2021, 598(1): 1-14.
[191] ZHANG Y, LI C, WANG Q, et al. Magnetism parameters characteristics of drilling deposits in Jianghan Plain and indication for forming of the Yangtze River Three Gorges[J]. Chinese Science Bulletin, 2008, 53(4): 584-590.
[192] JIA J T, ZHENG H B, HUANG X T, et al. Detrital zircon U-Pb ages of Late Cenozoic sediments from the Yangtze delta: Implication for the evolution of the Yangtze River[J]. Chinese Science Bulletin, 2010, 55(15): 1520-1528.
[193] DODSON M H, COMPSTON W, WILLIAMS I S, et al. A search for ancient detrital zircons in Zimbabwean sediments[J]. Journal of the Geological Society, 1988, 145(6): 977-983.
[194] ANDERSEN T. Detrital zircons as tracers of sedimentary provenance: Limiting conditions from statistics and numerical simulation[J]. Chemical Geology, 2005, 216(3-4): 249-270.
[195] LIU Z, COLIN C, HUANG W, et al. Climatic and tectonic controls on weathering in south China and Indochina Peninsula: Clay mineralogical and geochemical investigations from the Pearl, Red, and Mekong drainage basins[J]. Geochemistry Geophysics Geosystems, 2007, 8(5) : 1-18.
[196] YANG S Y, JIANG S Y, LING H F, et al. Sr-Nd isotopic compositions of the Changjiang sediments: Implications for tracing sediment sources[J]. Science in China, Series D: Earth Sciences, 2007, 50(10): 1556-1565.
[197] MENG X, LIU Y, SHI X, et al. Nd and Sr isotopic compositions of sediments from the Yellow and Yangtze Rivers: Implications for partitioning tectonic terranes and crust weathering of the Central and Southeast China[J]. Frontiers of Earth Science in China, 2008, 2(4): 418-426.
[198] TOLLSTRUP D, GILL J, KENT A, et al. Across-arc geochemical trends in the Izu-Bonin arc: Contributions from the subducting slab, revisited[J]. Geochemistry Geophysics Geosystems, 2010, 11(1) : 1-27.
[199] XU X, O’REILLY S Y, GRIFFIN W L, et al. The crust of Cathaysia: Age, assembly and reworking of two terranes[J]. Precambrian Research, 2007, 158(1-2): 51-78.
[200] ZHAO M, SHAO L, QIAO P. Characteristics of detrital zircon U-Pb geochronology of the pearl river sands and its implication on provenances[J]. Journal of Tongji University, 2015, 43(6): 915-923.
[201] HE M, ZHENG H, CLIFT P D. Zircon U-Pb geochronology and Hf isotope data from the Yangtze River sands: Implications for major magmatic events and crustal evolution in Central China[J]. Chemical Geology, 2013, 360-361(1): 186-203.
[202] ZHANG X, HUANG C, WANG Y, et al. Evolving Yangtze River reconstructed by detrital zircon U‐Pb dating and petrographic analysis of Miocene marginal Sea sedimentary rocks of the Western Foothills and Hengchun Peninsula, Taiwan[J]. Tectonics, 2017, 36(4): 634-651.
[203] TSAI C H, SHYU J B H, CHUNG S L, et al. Detrital zircon record from major rivers of luzon island: Implications for cenozoic continental growth in SE asia[J]. Journal of the Geological Society, 2019, 176(4): 727-735.
[204] ISHIZUKA O, HICKEY-VARGAS R, ARCULUS R J, et al. Age of Izu–Bonin–Mariana arc basement[J]. Earth and Planetary Science Letters, 2018, 481(1): 80-90.
[205] TALLING P J, WYNN R B, MASSON D G, et al. Onset of submarine debris flow deposition far from original giant landslide[J]. Nature, 2007, 450(7169): 541-544.
[206] MILLER K G, KOMINZ M A, BROWNING J V, et al. The phanerozoic record of global sea-level change[J]. Science, 2005, 310(5752): 1293-1298.
[207] 庞雄, 陈长民, 邵磊, 等. 白云运动: 南海北部渐新统—中新统重大地质事件及其意义[J]. 地质论评, 2007, 53(2): 145-151.
[208] ZHANG Y G, JI J, BALSAM W L, et al. High resolution hematite and goethite records from ODP 1143, South China Sea: Co-evolution of monsoonal precipitation and El Niño over the past 600,000 years[J]. Earth and Planetary Science Letters, 2007, 264(1-2): 136-150.
[209] CLIFT P D, WAN S, BLUSZTAJN J. Reconstructing chemical weathering, physical erosion and monsoon intensity since 25 Ma in the northern South China Sea: a review of competing proxies[J]. Earth-Science Reviews, 2014, 130(1): 86-102.
[210] LIU C, STOCKLI D F, CLIFT P D, et al. Geochronological and geochemical characterization of paleo-rivers deposits during rifting of the South China Sea[J]. Earth and Planetary Science Letters, 2022, 584(1): 117427.
[211] WANG P, CLEMENS S, BEAUFORT L, et al. Evolution and variability of the Asian monsoon system: state of the art and outstanding issues[J]. Quaternary Science Reviews, 2005, 24(5-6): 595-629.
[212] XU Z, LI T, WAN S, et al. Evolution of East Asian monsoon: Clay mineral evidence in the western Philippine Sea over the past 700 kyr[J]. Journal of Asian Earth Sciences, 2012, 60(1): 188-196.
[213] LIU Z, ZHAO Y, COLIN C, et al. Chemical weathering in Luzon, Philippines from clay mineralogy and major-element geochemistry of river sediments[J]. Applied Geochemistry, 2009, 24(11): 2195-2205.
[214] LIU W, GAI C, FENG W, et al. Coeval Evolution of the Eastern Philippine Sea Plate and the South China Sea in the Early Miocene: Paleomagnetic and Provenance Constraints From ODP Site 1177[J]. Geophysical Research Letters, 2021, 48(14): e2021GL093916.
[215] ZHAO M, SIBUET J C, WU J. Intermingled fates of the South China Sea and Philippine Sea plate[J]. National Science Review, 2019, 6(5): 886-890.
[216] POWNALL J M, LISTER G S, SPAKMAN W. Reconstructing subducted oceanic lithosphere by “reverse‐engineering” slab geometries: The northern Philippine Sea Plate[J]. Tectonics, 2017, 36(9): 1814-1834.
[217] ZHANG G L, LUO Q, ZHAO J, et al. Geochemical nature of sub-ridge mantle and opening dynamics of the South China Sea[J]. Earth and Planetary Science Letters, 2018, 489(1): 145-155.
[218] HICKEY-VARGAS R. Origin of the Indian Ocean-type isotopic signature in basalts from Philippine Sea plate spreading centers: An assessment of local versus large-scale processes[J]. Journal of Geophysical Research, 1998, 103(B9): 20963-20979.
[219] NICHOLS G, HALL R. History of the Celebes Sea Basin based on its stratigraphic and sedimentological record[J]. Journal of Asian Earth Sciences, 1999, 17(1-2): 47-59.
[220] TAPPONNIER P, PELTZER G, LE DAIN A Y, et al. Propagating extrusion tectonics in Asia: new insights from simple experiments with plasticine.[J]. Geology, 1982, 10(12): 611-616.
[221] 孙卫东, 林秋婷, 张丽鹏, 等. 跳出南海看南海——新特提斯洋闭合与南海的形成演化[J]. 岩石学报, 2018, 034(012): 3467-3478.
[222] KARIG D E. Origin and development of marginal basins in the western Pacific[J]. Journal of Geophysical Research, 1971, 76(11): 2542-2561.
[224] FLOWER M, TAMAKI K, HOANG N. Mantle extrusion: a model for dispersed volcanism and Dupal-Like asthenosphere in East Asia and the western Pacific[M]//Flower M F J, Chung S L, Lo C H, et al. Mantle Dynamics and Plate Interactions in East Asia, Volume 27. Washington: AGU, 1998: 67-88.
[225] LIAO R, ZHU H, LI C, et al. Geochemistry of mantle source during the initial expansion and its implications for the opening of the South China Sea[J]. Marine Geology, 2022, 447(1): 106798.
[226] LIANG H-Y, CAMPBELL I H, ALLEN C M, et al. The age of the potassic alkaline igneous rocks along the Ailao Shan–Red River shear zone: implications for the onset age of left-lateral shearing[J]. The Journal of geology, 2007, 115(2): 231-242.
[227] YU M, YAN Y, HUANG C, et al. Opening of the South China Sea and upwelling of the Hainan plume[J]. Geophysical Research Letters, 2018, 45(6): 2600-2609.
[228] 黄小龙, 徐义刚, 杨帆. 南海玄武岩: 扩张洋脊与海山[J]. 科技导报, 2020, 38(18): 46-51.
[229] 陈凌, 王旭, 梁晓峰, 等. 俯冲构造 vs. 地幔柱构造——板块运动驱动力探讨[J]. 中国科学: 地球科学, 2020, 50(4): 501-514.
[230] ANDERSON D L. Top-down tectonics?[J]. Science, 2001, 293(5537): 2016-2018.
[231] CONRAD C P, LITHGOW‐BERTELLONI C. The temporal evolution of plate driving forces: Importance of “slab suction” versus “slab pull” during the Cenozoic [J]. Journal of Geophysical Research: Solid Earth, 2004, 109(B10): 1-14.
[232] WILSON J. Evidence from islands on the spreading of ocean floors[J]. Nature, 1963, 197(4867): 536-538.
[233] WILSON J T. Mantle plumes and plate motions[J]. Tectonophysics, 1973, 19(2): 149-164.
[234] MORGAN W J. Convection plumes in the lower mantle[J]. Nature, 1971, 230(5288): 42-43.
[235] LEI C, ALVES T M, REN J, et al. Depositional architecture and structural evolution of a region immediately inboard of the locus of continental breakup (Liwan Sub-basin, South China Sea)[J]. Geological Society of America Bulletin, 2019, 131(1): 1059-1074.
[236] PENG D, LIU L, HU J, et al. Formation of East Asian Stagnant Slabs Due To a Pressure‐Driven Cenozoic Mantle Wind Following Mesozoic Subduction[J]. Geophysical Research Letters, 2021, 48(18): e2021GL094638.

所在学位评定分委会
海洋科学与工程系
国内图书分类号
P76、P736
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/417125
专题工学院_海洋科学与工程系
推荐引用方式
GB/T 7714
刘伟. 基于古地磁和物源分析的南海与菲律宾海协同演化研究[D]. 哈尔滨. 哈尔滨工业大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11849585-刘伟-海洋科学与工程系(12573KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[刘伟]的文章
百度学术
百度学术中相似的文章
[刘伟]的文章
必应学术
必应学术中相似的文章
[刘伟]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。