[1] HAN Y J, YOU X L, XING W H, et al. Paracrine and endocrine actions of bone—the functions of secretory proteins from osteoblasts, osteocytes, and osteoclasts[J]. Bone Research, 2018, 6: 16.
[2] ZHANG M M, LI Y, FENG T J, et al. Bone engineering scaffolds with exosomes: a promising strategy for bone defects re pair[J]. Frontiers in Bioengineering and Biotechnology, 2022 , 10: 920378.
[3] HUANG E E, ZHANG N, GANIO E A, et al. Differential dynamics of bone graft transplantation and mesenchymal stem cell therapy during bone defect healing in a murine critical size defect[J]. Journal of Orthopaedic Translation, 2022, 36: 64-74.
[4] XIONG Y K, XIONG Y Z. Applications of bone regeneration hydrogels in the treatment of bone defects: a review[J]. Journal of Materials Science, 2022 , 57(2): 887-913.
[5] PARSONS B, STRAUSS E. Surgi cal management of chronic osteomyelitis[J]. The American Journal of Surgery, 2004, 188(1): 57 S-66S.
[6] SALAMANCA E, HSU C-C, HUANG H-M, et al. Bone regeneration using a porcine bone substitute collagen composite in vitro and in vivo[J]. Scientific Reports, 2018, 8(1): 1-8.
[7] NKENKE E, NEUKAM F W. Autogenous bone harvesting and grafting in advanced jaw resorption: morbidity, resorption and implant survival[J].European Journal of Oral Implantology, 2014, 7 (Suppl2): S203-S217.
[8] BALTATU I, SANDU A V, VLAD M D, et al. Mechanical characterization and in vitro assay of biocompatible titanium alloys[J]. Micromachines, 2022, 13(3): 430.
[9] ASL S M, GANJALI M, KARIMI M. Surface modification of 316L stainless steel by laser-treated HA-PLA nanocomposite films toward enhanced biocompatibility and corrosion -resistance in vitro[J]. Surface & Coatings Technology, 2019, 363: 236-243.
[10] DAVIS R, SINGH A, JACKSON M J, et al. A comprehensive review on metallic implant biomaterials and their subtractive manufacturing[J]. The International Journal of Advanced Manufacturing Technology, 2022 , 120(3): 1473-1530.
[11] JIA B, ZHANG Z C, ZHUANG Y F, et al. High-strength biodegradable zinc alloy implants with antibacterial and osteogenic properties for the treatment of MRSA-induced rat osteomyelitis[J]. Biomaterials, 2022, 287: 121663.
[12] ZHANG D D, CHENG S, TAN J, et al. Black Mn -containing layered double hydroxide coated magnesium alloy for osteosarcoma therapy, bacteria killing, and bone regeneration[J]. Bioactive Materials, 2022, 17: 394-405.
[13] LI T, HAN F, XUE J M, et al. Well ordered-microstructure bioceramics[J]. Applied Materials Today, 2021, 25: 101194.
[14] MISTRY S, ROY R, JHA A K, et al. Treatment of long bone infection by a biodegradable bone cement releasing antibiotics in human[J]. J ournal of Controlled Release, 2022, 346: 180 -192.
[15] ZHANG Q, MA L M, JI X F, et al. High-strength hydroxyapatite scaffolds with minimal surface macrostructures for load -bearing bone regeneration[J]. Advanced Functional Materials, 2022 , 32(33): 2204182.
[16] TOUYA N, DEVUN M, HANDSCHIN C, et al. In vitro and in vivo characterization of a novel tricalcium silicate -based ink for bone regeneration using laser-assisted bioprinting[J]. Biofabrication, 2022, 14(2): 024104.
[17] BEGINES B, AREVALO C, ROMERO C, et al. Fabrication and characterization of bioactive gelatin -alginate-bioactive glass composite coatings on porous titanium substrates[J]. ACS Applied Materials & Interfaces, 2022, 14(13): 15008-15020.
[18] YOSHIKAWA H, MYOUI A. Bone tissue engineering with porous hydroxyapatite ceramics[J]. Journal of Artificial Organs, 2005, 8(3): 131 -136.
[19] ZHOU Y L, WU C T, CHANG J. Bioceramics to regulate stem cells and their microenvironment for tissue regeneration[J]. Materials Today, 2019, 24: 41 -56.
[20] PEI X, MA L, ZHANG B Q, et al. Creating hierarchical porosity hydroxyapatite scaffolds with osteoinduction by three -dimensional printing and microwave sintering[J]. Biofabrication, 2017, 9(4): 045008.
[21] XU H H K, WANG P, WANG L, et al. Calcium phosphate cements for bone engineering and their biological properties[J]. Bone Research, 2017, 5(1): 17056.
[22] KANTER B, VIKMAN A, BRÜCKNER T, et al. Bone regeneration capacity of magnesium phosphate cements in a large animal model[J]. Acta Biomaterialia, 2018, 69: 352-361.
[23] LIN Z F, CAO Y N, ZOU J M, et al. Improved osteogenesis and angiogenesis of a novel copper ions doped calcium phosphate cement[J]. Materials Science & Engineering C, 2020, 114: 111032.
[24] ZHANG J Y, MA S Q, LIU Z H, et al. Guided bone regeneration with asymmetric collagen-chitosan membranes containing aspirin-loaded chitosan nanoparticles[J]. International Journal of Nanomedicine , 2017, 12: 8855-8866.
[25] ZHANG D W, WU X W, CHEN J D, et al. The development of collagen based composite scaffolds for bone regeneration[J]. Bioactive Materials, 2018, 3(1): 129-138.
[26] ZHOU Z Y, CUI J, WU S L, et al. Silk fibroin-based biomaterials for cartilage/osteochondral repair[J]. Theranostics, 2022, 12(11): 5103 -5124.
[27] LOGITHKUMAR R, KESHAVNARAYAN A, DHIVYA S, et al. A review of chitosan and its derivatives in bone tissue engineering [J]. Carbohydrate Polymers, 2016, 151: 172-188.
[28] HASTURK O, ERMIS M, DEMIRCI U, et al. Square prism micropillars improve osteogenicity of poly (methyl methacrylate) surfaces[J]. Journal of Materials Science: Materials in Medicine, 2018, 29: 53.
[29] MAKSIMKIN A V, SENATOV F S, NIAZA K, et al. Ultra-high molecular weight polyethylene/titanium-hybrid implant for bone -defect replacement[J]. Materials, 2020, 13(13): 3010.
[30] FENG P, JIA J Y, LIU M Y, et al. Degradation mechanisms and acceleration strategies of poly (lactic acid) scaffold for bone regeneration [J]. Materials and Design, 2021, 210: 110066.
[31] 肖天华, 刘荣涛, 庞贻宇, 等. 骨植入聚醚醚酮材料表面改性的研究进展[J]. 广东工业大学学报, 2021, 38(2): 73-82.
[32] ESCHBACH L. Nonresorbable polymers in bone surgery[J]. Injury, 2000, 31(Suppl 4): D22-D27.
[33] KURTZ S M, DEVINE J N. PEEK biomaterials in trauma, orthopedic, and spinal implants[J]. Biomaterials, 2007, 28: 4845 -4869.
[34] HAN X T, YANG D, YANG C C, et al. Carbon fiber reinforced PEEK composites based on 3D-printing technology for orthopedic and dental applications[J]. Journal of Clinical Medicine, 2019, 8(2): 240.
[35] 毛誉蓉, 孙佳敏, 周雄, 等. 医用特种高分子聚醚醚酮植入体及其表面界面工程[J]. 功能高分子学报, 2021, 34(2): 144-160.
[36] CHEN M L, OUYANG L P, LU T, et al. Enhanced bioactivity and bacteriostasis of surface fluorinated polyetheretherketone [J]. ACS Applied Materials & Interfaces, 2017, 9(20): 16824-16833.
[37] FERNANDEZ-YAGUE M A, ABBAH S A, MCNAMARA L, et al. Biomimetic approaches in bone tissue engineering: Integrating biological and physicomechanical strategies[J]. Advanced Drug Delivery Reviews, 2015, 84: 1-29.
[38] LIU X J, GAN K, LIU H, et al. Antibacterial properties of nano -silver coated PEEK prepared through magnetron sputtering[J]. De ntal Materials, 2017, 33(9): E348-E360.
[39] YAN J L, XIA D D, ZHOU W H, et al. PH-responsive silk fibroin-based CuO/Ag micro/nano coating endows polyetheretherketone with synergistic antibacterial ability, osteogenesis, and angiogenesis[J]. Acta Biomaterialia, 2020, 115: 220-234.
[40] FRANTZ C, STEWART K M, WEAVER V M. The extracellular matrix at a glance[J]. Journal of Cell Science , 2010, 123(24): 4195-4200.
[41] GHORBANI S, SHAHROKHTASH A, GAUTROT J E, et al. Protein ligand nanopattern size selects for cellular adhesion via hemidesmosomes over focal adhesions[J]. Small Methods, 2022, 6(6): 2200152.
[42] SUNARSO, TSUCHIYA A, FUKUDA N, et al. Effect of micro -roughening of poly(ether ether ketone) on bone marrow derived stem cell and macrophage responses, and osseointegration[J]. Journal of Biomaterials Science , Polymer Edition, 2018, 29(12): 1375-1388.
[43] WANG Y F, YU Z, LI K M, et al. Effects of surface properties of titani um alloys modified by grinding, sandblasting and acidizing and nanosecond laser on cell proliferation and cytoskeleton[J]. Applied Surface Science, 2020, 501 : 144279.
[44] WAN T, JIAO Z X, GUO M, et al. Gaseous sulfur trioxide induced controllable sulfonation promoting biomineralization and osseointegration of polyetheretherketone implants[J]. Bioactive Materials, 2020, 5(4): 1004-1017.
[45] GITTENS R A, OLIVARES-NAVARRETE R, SCHWARTZ Z, et al. Implant osseointegration and the role of microroughness and nanostructure s: lessons for spine implants[J]. Acta Biomaterialia , 2014, 10(8): 3363-3371.
[46] ZANCHETTA E, GUIDI E, GIUSTINA G D, et al. Injection molded polymeric micropatterns for bone regeneration study[J]. ACS Applied Materials & Interfaces, 2015, 7(13): 7273-7281.
[47] PORRELLI D, MARDIROSSIAN M, CRAPISI N, et al. Polyetheretherketone and titanium surface treatments to modify roughness and wettability—improvement of bioactivity and antibacterial properties[J]. Journal of Materials Science & Technology, 2021, 95: 213-224.
[48] ZHANG S M, FENG Z C, HU Y, et al. Endowing polyetheretherketone implants with osseointegration properties: in situ construction of patterned nanorod arrays[J]. Small, 2022, 18(5): 2105589.
[49] MO S, MEHRJOU B, TANG K W, et al. Dimensional-dependent antibacterial behavior on bioactive micro/nano polyetheretherketone (PEEK) arrays[J]. Chemical Engineering Journal, 2020, 392 : 123736.
[50] GANJIAN M, MODARESIFAR K, ROMPOLAS D, et al. Nanoimprinting for high-throughput replication of geometrically precise pillars in fused silica to regulate cell behavior[J]. Acta Biomaterialia , 2022, 140: 717-729.
[51] GORELICK S, RAHKILA P, AR A S, et al. Growth of osteoblasts on lithographically modified surfaces[J]. Nuclear Instruments and Methods in Physics Research Section B: Be am Interactions with Materials & Atoms, 2007, 260(1): 130-135.
[52] LAMERS E, WALBOOMERS X F, DOMANSKI M, et al. The influence of nanoscale grooved substrates on osteoblast behavior and extracellular matrix deposition[J]. Biomaterials, 2010, 31(12): 3307 -3316.
[53] XIE D, XU C H, YE C, et al. Fabrication of submicro -nano structures on polyetheretherketone surface by femtosecond laser for exciting cellular responses of MC3T3-E1 cells/gingival epithelial cells[J]. International Journal of Nanomedicine, 2021, 16: 3201 -3216.
[54] HEITZ J, PLAMADEALA C, WIESBAUER M, et al. Bone -forming cells with pronounced spread into the third dimension in polymer scaffolds fabricated by two-photon polymerization[J]. Journal of Biomedical Materials Research PartA, 2017, 105A(3): 891-899.
[55] XIAO J, WAN Y Z, YANG Z W, et al. Simvastatin -loaded nanotubular mesoporous bioactive glass scaffolds for bone tissue engineering[J]. Microporous and Mesoporous Materials, 2019, 288 : 109570.
[56] GWON Y, PARK S, KIM W, et al. Radially patterned transplantable biodegradable scaffolds as topographically defined contact guidance platforms for accelerating bone regeneration[J]. Journal of Biological Engineering, 2021, 15(1): 12.
[57] HULSHOF F F B, PAPENBURG B, VASILEVICH A, et al. Mining for osteogenic surface topographies: in silico design to in vivo osseo -integration[J]. Biomaterials, 2017, 137: 49 -60.
[58] BETTINGER C J, LANGER R, BORENSTEIN J T. Engineering substrate topography at the micro - and nanoscale to control cell function[J]. Angewandte Chemie International Edition , 2009, 48(30): 5406-5415.
[59] SEO C H, JEONG H, FENG Y, et al. Micropit surfaces designed for accelerating osteogenic differentiation of murine mesenchymal stem cells via enhancing focal adhesion and actin polymerization[J]. Biomaterials, 2014, 35(7): 2245-2252.
[60] KIM C-S, KIM J-H, KIM B, et al. A specific groove pattern can effectively induce osteoblast differentiation[J]. Advanced Functional Materials, 2017, 27(44): 1703569.
[61] GUI N, XU W, MYERS D E, et al. The effect of ordered and partially ordered surface topography on bone cell responses: a review[J]. Biomaterials Science , 2018, 6(2): 250-264.
[62] ELIAZ N, METOKI N. Calcium phosphate bioceramics: a review of their history, structure, properties, coating technologies and biomedical applications[J]. Materials, 2017, 10(4): 334.
[63] OYANE A, NAKAMURA M, SAKAMAKI I, et al. Laser-assisted wet coating of calcium phosphate for surface -functionalization of PEEK[J]. PLoS One, 2018, 13(10): e0206524.
[64] SUNARSO, TSUCHIYA A, TOITA R, et al. Enhanced osseointegration capability of poly(ether ether ketone) via combined phosphate and calcium surface-functionalization[J]. International Journal of Molecular Sciences, 2020, 21(1): 198.
[65] YABUTSUKA T, FUKUSHIMA K, HIRUTA T, et al. Effect of pores formation process and oxygen plasma treatment to hydroxyapatite formation on bioactive PEEK prepared by incorporation of precursor of apatite[J]. Materials Science & Engineering C, 2017, 81: 349-358.
[66] YABUTSUKA T, FUKUSHIMA K, HIRUTA T, et al. Fabrication of bioactive fiber-reinforced PEEK and MXD6 by incorporation of precursor of apatite[J]. Journal of Biomedical Materials Research Part B, 2018, 106B(6): 2254-2265.
[67] MASAMOTO K, FUJIBAYASHI S, YABUTSUKA T, et al. In vivo and in vitro bioactivity of a "precursor of apatite" treatment on polyetheretherketone[J]. Acta Biomaterialia, 2019, 91: 48-59.
[68] AMBARD A J, MUENINGHOFF L. Calcium phosphate cement: review of mechanical and biological properties[J]. Journal of Prosthodontics, 2006, 15(5): 321-328.
[69] LEE J H, JANG H L, LEE K M, et al. In vitro and in vivo evaluation of the bioactivity of hydroxyapatite -coated polyetheretherketone biocomposites created by cold spray technology[J]. Acta Biomaterialia, 2013, 9(4): 6177 -6187.
[70] SUSKA F, OMAR O, EMANUELSSON L, et al. Enhancement of CRF -PEEK osseointegration by plasma -sprayed hydroxyapatite: a rabbit model[J]. Journal of Biomaterials Applications, 2014, 29(2): 234 -242.
[71] JOHANSSON P, BARKARMO S, HAWTHAN M, et al. Biomechanical, histological, and computed X-ray tomographic analyses of hydroxyapatite coated PEEK implants in an extended healing model in rabbit[J]. Journal of Biomedical Materials Research Part A, 2018, 106A(5): 1440-1447.
[72] BAⱾTAN F E, REHMAN M A U, AVCU Y Y, et al. Electrophoretic co -deposition of PEEK-hydroxyapatite composite coatings for biomedical applications[J]. Colloids and Surfaces B: Biointerfaces, 2018, 169: 176-182.
[73] REIGSTAD O, JOHANSSON C, STENPORT V, et al. Differ ent patterns of bone fixation with hydroxyapatite and resorbable CaP coatings in the rabbit tibia at 6, 12, and 52 weeks[J]. Journal of Biomedical Materials Research Part B, 2011, 99B(1): 14-20.
[74] RØKKUM M, REIGSTAD A, JOHANSSON C B, et al. Tissue reactions adjacent to well-fixed hydroxyapatite-coated acetabular cups[J]. The Journal of Bone and Joint Surgery, 2003, 85(3): 440 -447.
[75] BARKARMO S, WENNERBERG A, HOFFMAN M, et al. Nano -hydroxyapatite-coated PEEK implants: a pilot study in rabbit bone[J]. Journal of Biomedical Materials Research Part A, 2013, 101A(2): 465-471.
[76] JOHANSSON P, JIMBO R, KJELLIN P, et al. Biomechanical evaluation and surface characterization of a nano -modified surface on PEEK implants: a study in the rabbit tibia[J]. International Journal o f Nanomedicine, 2014, 9: 3903-3911.
[77] MAHJOUBI H, BUCK E, MANIMUNDA P, et al. Surface phosphonation enhances hydroxyapatite coating adhesion on polyetheretherketone and its osseointegration potential[J]. Acta Biomaterialia, 2017, 47: 149 -158.
[78] BLENDINGER F, SEITZ D, OTTENSCHLÄGER A, et al. Atomic layer deposition of bioactive TiO2 thin films on polyetheretherketone for orthopedic implants[J]. ACS Applied Materials & Interfaces, 2021, 13(3): 3536-3546.
[79] MATSUNO H, YOKOYAMA A, WATARI F, et al. Bioc ompatibility and osteogenesis of refractory metal implants, titanium, hafnium, niobium, tantalum and rhenium[J]. Biomaterials, 2001, 22(11): 1253 -1262.
[80] DOLATSHAHI-PIROUZ A, JENSEN T, KRAFT D C, et al. Fibronectin adsorption, cell adhesion, and proliferatio n on nanostructured tantalum surfaces[J]. ACS Nano, 2010, 4(5): 2874-2882.
[81] HORANDGHADIM N, KHALIL-ALLAFI J, URGEN M. Effect of Ta 2O5content on the osseointegration and cytotoxicity behaviors in hydroxyapatite -Ta 2O5 coatings applied by EPD on superelastic NiTi alloys[J]. Materials Science & Engineering C, 2019, 102: 683 -695.
[82] ASADULLAH S, MEI S Q, WANG D Q, et al. Sulfonated porous surface of tantalum pentoxide/polyimide composite with micro -submicro structures displaying antibacterial performances and stimu lating cell responses[J]. Materials and Design, 2020, 190: 108510.
[83] MAHO A, LINDEN S, ARNOULD C, et al. Tantalum oxide/carbon nanotubes composite coatings on titanium, and their functionalization with organophosphonic molecular films: a high quality scaffold for hydroxyapatite growth[J]. Journal of Colloid and Interface Science , 2012, 371(1): 150-158.
[84] LU T, WEN J, QIAN S, et al. Enhanced osteointegration on tantalum-implanted polyetheretherketone surface with bone -like elastic modulus[J]. Biomaterials, 2015, 51: 173-183.
[85] SEO H-J, CHO Y-E, KIM T, et al. Zinc may increase bone formation through stimulating cell proliferation, alkaline phosphatase activity and collagen synthesis in osteoblastic MC3T3-E1 cells[J]. Nutrition Research and Practice , 2010, 4(5): 356-361.
[86] NAIRN B L, LONERGAN Z R, WANG J F, et al. The response of acinetobacter baumannii to zinc starvation[J]. Cell Host & Microbe, 2016, 19(6): 826-836.
[87] LIU W, LI J H, CHENG M Q, et al. Zinc-modified sulfonated polyetheretherketone surface with immunomodulatory function for guiding cell fate and bone regeneration [J]. Advanced Science, 2018, 5(10): 1800749.
[88] LI F-Y, CHAIGNE-DELALANDE B, KANELLOPOULOU C, et al. Second messenger role for Mg2 + revealed by human T-cell immunodeficiency[J]. Nature, 2011, 475: 471-476.
[89] YU X M, IBRAHIM M, LIU Z Y, et al. Biofunctional Mg coating on PEEK for improving bioactivity[J]. Bioactive Materials, 2018, 3(2): 139-143.
[90] BJELIĆ D, FINŠGAR M. The role of growth factors in bioactive coatings[J]. Pharmaceutics, 2021, 13(7): 1083.
[91] DINJASKI N, PLOWRIGHT R, ZHOU S, et al. Osteoinductive recombinant silk fusion proteins for bone regeneration[J]. Acta Biomaterialia, 2017, 49: 127-139.
[92] TINTUT Y, DEMER L L. Effects of bioactive lipids and lipoproteins on bone[J]. Trends in Endocrinology Metabolism, 2014, 25(2): 53-59.
[93] STEWART C, AKHAVAN B, WISE S G, et al. A review of biomimetic surface functionalization for bone -integrating orthopedic implants: mechan isms, current approaches, and future directions[J]. Progress in Materials Science, 2019, 106: 100588.
[94] WANG C-P J, BYUN M J, KIM S-N, et al. Biomaterials as therapeutic drug carriers for inflammatory bowel disease treatment[J]. Journal of Controlled Release, 2022, 345: 1-19.
[95] AO Q, WANG S L, HE Q, et al. Fibrin glue/fibronectin/heparin-based delivery system of BMP2 induces osteogenesis in MC3T3-E1 cells and bone formation in rat calvarial critical-sized defects[J]. ACS Applied Materials & Interfaces, 2020, 12(11): 13400-13410.
[96] WU J P, LI L L, FU C, et al. Micro-porous polyetheretherketone implants decorated with BMP-2 via phosphorylated gelatin coating for enhancing cell adhesion and osteogenic differentiation[J]. Colloids and Surfaces B :Biointerfaces, 2018, 169: 233-241.
[97] FAN L, GUAN P F, XIAO C R, et al. Exosome -functionalized polyetheretherketone -based implant with immunomodulatory property for enhancing osseointegration[J]. Bioactive Materials, 2021, 6(9): 2754-2766.
[98] XU X, LI Y L, WANG L X, et al. Triple-functional polyetheretherketone surface with enhanced bacteriostasis and anti-inflammatory and osseointegrative properties for implant application[J]. Biomaterials, 2019, 212: 98-114.
[99] GUILLOT R, PIGNOT-PAINTRAND I, LAVAUD J, et al. Assessment of a polyelectrolyte multilayer film coating loaded with BMP-2 on titanium and PEEK implants in the rabbit femoral condyle[J]. Acta Biomaterialia, 2016 , 36: 310-322.
[100]GARRIDO-MESA N, ZARZUELO A, GÁLVEZ J. Minocycline: far beyond an antibiotic[J]. British Journal of Pharmacology, 2013, 169(2): 337-352.
[101]DOUMENG M, MAKHLOUF L, BERTHET F, et al. A comparative study of the crystallinity of polyetheretherketone by using density, DSC, XRD, and Raman spectroscopy techniques[J]. Polymer Testing, 2021, 93 : 106878.
修改评论