中文版 | English
题名

基于拓扑结构和钽涂层协同效应的聚醚醚酮表面改性

其他题名
SURFACE MODIFICATION OF POLYETHERETHERKETONE BASED ON THE SYNERGISTIC EFFECT OF TOPOLOGICAL STRUCTURE AND TANTALUM COATING
姓名
姓名拼音
MAO Zhixiang
学号
12032299
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
0856 材料与化工
导师
王晓飞
导师单位
前沿与交叉科学研究院
论文答辩日期
2022-11-04
论文提交日期
2022-12-30
学位授予单位
南方科技大学
学位授予地点
深圳
摘要
聚醚醚酮(PEEK)具有良好的化学稳定性、生物相容性、与人骨接近
的弹性模量以及 X 射线可透过性等优点,是一种在骨科植入物领域很有应
用前景的半结晶高分子材料。然而,PEEK 表面的生物惰性使其骨整合性
差,植入后与宿主骨界面形成纤维组织包裹层,无法形成牢固的骨性结合,
影响了其植入效果。鉴于此,本论文聚焦于骨植入 PEEK 材料的表面生物
功能化改性。通过构建拓扑结构和活性涂层,达到协同增强其生物相容性
和骨整合性能的目的。
利用光刻技术在 PEEK 表面先制备出三维拓扑图案,通过优化其形貌
及微观结构制得高分辨率的拓扑结构(脊宽(R)3 μm,槽宽(G)7 μm,
深度(D)3 μm)。然后,在得到的拓扑结构上利用磁控溅射技术沉积厚度
50 nm(± 10 nm)的钽(Ta)涂层,研究沉积条件对涂层结构和化学组成
的影响。XRD 和 XPS 表征结果显示涂层成分主要为 Ta2O5。水接触角测试
证明拓扑结构和 Ta 涂层有效提升了 PEEK 表面亲水性。
为了推进 PEEK 作为骨植入材料的潜在应用,对改性后的 PEEK 分别
进行了体外和体内评价。体外细胞增殖实验结果表明材料没有明显的生物
毒性,对增殖没有抑制作用。PEEK 表面拓扑结构对细胞具有接触引导作
用,细胞形态由多角形变成细长梭形,同时细胞排列有序、呈取向性生长。
拓扑结构上的 Ta 涂层进一步改善了材料的生物相容性。在拓扑结构和 Ta 涂
层协同作用下,PEEK 材料的生物活性和成骨能力得到明显改善。体内动
物实验研究发现,双重改性后的 PEEK 植入体具有良好的骨修复能力。
Micro-CT 和组织切片结果表明新生骨与界面的结合紧密,有利于植入体与
宿主骨的充分融合,加速骨缺损的愈合过程,表明拓扑结构和 Ta 涂层协同
实现了增强 PEEK 材料骨传导和骨整合性能的效果。
关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2022-12
参考文献列表

[1] HAN Y J, YOU X L, XING W H, et al. Paracrine and endocrine actions of bone—the functions of secretory proteins from osteoblasts, osteocytes, and osteoclasts[J]. Bone Research, 2018, 6: 16.
[2] ZHANG M M, LI Y, FENG T J, et al. Bone engineering scaffolds with exosomes: a promising strategy for bone defects re pair[J]. Frontiers in Bioengineering and Biotechnology, 2022 , 10: 920378.
[3] HUANG E E, ZHANG N, GANIO E A, et al. Differential dynamics of bone graft transplantation and mesenchymal stem cell therapy during bone defect healing in a murine critical size defect[J]. Journal of Orthopaedic Translation, 2022, 36: 64-74.
[4] XIONG Y K, XIONG Y Z. Applications of bone regeneration hydrogels in the treatment of bone defects: a review[J]. Journal of Materials Science, 2022 , 57(2): 887-913.
[5] PARSONS B, STRAUSS E. Surgi cal management of chronic osteomyelitis[J]. The American Journal of Surgery, 2004, 188(1): 57 S-66S.
[6] SALAMANCA E, HSU C-C, HUANG H-M, et al. Bone regeneration using a porcine bone substitute collagen composite in vitro and in vivo[J]. Scientific Reports, 2018, 8(1): 1-8.
[7] NKENKE E, NEUKAM F W. Autogenous bone harvesting and grafting in advanced jaw resorption: morbidity, resorption and implant survival[J].European Journal of Oral Implantology, 2014, 7 (Suppl2): S203-S217.
[8] BALTATU I, SANDU A V, VLAD M D, et al. Mechanical characterization and in vitro assay of biocompatible titanium alloys[J]. Micromachines, 2022, 13(3): 430.
[9] ASL S M, GANJALI M, KARIMI M. Surface modification of 316L stainless steel by laser-treated HA-PLA nanocomposite films toward enhanced biocompatibility and corrosion -resistance in vitro[J]. Surface & Coatings Technology, 2019, 363: 236-243.
[10] DAVIS R, SINGH A, JACKSON M J, et al. A comprehensive review on metallic implant biomaterials and their subtractive manufacturing[J]. The International Journal of Advanced Manufacturing Technology, 2022 , 120(3): 1473-1530.
[11] JIA B, ZHANG Z C, ZHUANG Y F, et al. High-strength biodegradable zinc alloy implants with antibacterial and osteogenic properties for the treatment of MRSA-induced rat osteomyelitis[J]. Biomaterials, 2022, 287: 121663.
[12] ZHANG D D, CHENG S, TAN J, et al. Black Mn -containing layered double hydroxide coated magnesium alloy for osteosarcoma therapy, bacteria killing, and bone regeneration[J]. Bioactive Materials, 2022, 17: 394-405.
[13] LI T, HAN F, XUE J M, et al. Well ordered-microstructure bioceramics[J]. Applied Materials Today, 2021, 25: 101194.
[14] MISTRY S, ROY R, JHA A K, et al. Treatment of long bone infection by a biodegradable bone cement releasing antibiotics in human[J]. J ournal of Controlled Release, 2022, 346: 180 -192.
[15] ZHANG Q, MA L M, JI X F, et al. High-strength hydroxyapatite scaffolds with minimal surface macrostructures for load -bearing bone regeneration[J]. Advanced Functional Materials, 2022 , 32(33): 2204182.
[16] TOUYA N, DEVUN M, HANDSCHIN C, et al. In vitro and in vivo characterization of a novel tricalcium silicate -based ink for bone regeneration using laser-assisted bioprinting[J]. Biofabrication, 2022, 14(2): 024104.
[17] BEGINES B, AREVALO C, ROMERO C, et al. Fabrication and characterization of bioactive gelatin -alginate-bioactive glass composite coatings on porous titanium substrates[J]. ACS Applied Materials & Interfaces, 2022, 14(13): 15008-15020.
[18] YOSHIKAWA H, MYOUI A. Bone tissue engineering with porous hydroxyapatite ceramics[J]. Journal of Artificial Organs, 2005, 8(3): 131 -136.
[19] ZHOU Y L, WU C T, CHANG J. Bioceramics to regulate stem cells and their microenvironment for tissue regeneration[J]. Materials Today, 2019, 24: 41 -56.
[20] PEI X, MA L, ZHANG B Q, et al. Creating hierarchical porosity hydroxyapatite scaffolds with osteoinduction by three -dimensional printing and microwave sintering[J]. Biofabrication, 2017, 9(4): 045008.
[21] XU H H K, WANG P, WANG L, et al. Calcium phosphate cements for bone engineering and their biological properties[J]. Bone Research, 2017, 5(1): 17056.
[22] KANTER B, VIKMAN A, BRÜCKNER T, et al. Bone regeneration capacity of magnesium phosphate cements in a large animal model[J]. Acta Biomaterialia, 2018, 69: 352-361.
[23] LIN Z F, CAO Y N, ZOU J M, et al. Improved osteogenesis and angiogenesis of a novel copper ions doped calcium phosphate cement[J]. Materials Science & Engineering C, 2020, 114: 111032.
[24] ZHANG J Y, MA S Q, LIU Z H, et al. Guided bone regeneration with asymmetric collagen-chitosan membranes containing aspirin-loaded chitosan nanoparticles[J]. International Journal of Nanomedicine , 2017, 12: 8855-8866.
[25] ZHANG D W, WU X W, CHEN J D, et al. The development of collagen based composite scaffolds for bone regeneration[J]. Bioactive Materials, 2018, 3(1): 129-138.
[26] ZHOU Z Y, CUI J, WU S L, et al. Silk fibroin-based biomaterials for cartilage/osteochondral repair[J]. Theranostics, 2022, 12(11): 5103 -5124.
[27] LOGITHKUMAR R, KESHAVNARAYAN A, DHIVYA S, et al. A review of chitosan and its derivatives in bone tissue engineering [J]. Carbohydrate Polymers, 2016, 151: 172-188.
[28] HASTURK O, ERMIS M, DEMIRCI U, et al. Square prism micropillars improve osteogenicity of poly (methyl methacrylate) surfaces[J]. Journal of Materials Science: Materials in Medicine, 2018, 29: 53.
[29] MAKSIMKIN A V, SENATOV F S, NIAZA K, et al. Ultra-high molecular weight polyethylene/titanium-hybrid implant for bone -defect replacement[J]. Materials, 2020, 13(13): 3010.
[30] FENG P, JIA J Y, LIU M Y, et al. Degradation mechanisms and acceleration strategies of poly (lactic acid) scaffold for bone regeneration [J]. Materials and Design, 2021, 210: 110066.
[31] 肖天华, 刘荣涛, 庞贻宇, 等. 骨植入聚醚醚酮材料表面改性的研究进展[J]. 广东工业大学学报, 2021, 38(2): 73-82.
[32] ESCHBACH L. Nonresorbable polymers in bone surgery[J]. Injury, 2000, 31(Suppl 4): D22-D27.
[33] KURTZ S M, DEVINE J N. PEEK biomaterials in trauma, orthopedic, and spinal implants[J]. Biomaterials, 2007, 28: 4845 -4869.
[34] HAN X T, YANG D, YANG C C, et al. Carbon fiber reinforced PEEK composites based on 3D-printing technology for orthopedic and dental applications[J]. Journal of Clinical Medicine, 2019, 8(2): 240.
[35] 毛誉蓉, 孙佳敏, 周雄, 等. 医用特种高分子聚醚醚酮植入体及其表面界面工程[J]. 功能高分子学报, 2021, 34(2): 144-160.
[36] CHEN M L, OUYANG L P, LU T, et al. Enhanced bioactivity and bacteriostasis of surface fluorinated polyetheretherketone [J]. ACS Applied Materials & Interfaces, 2017, 9(20): 16824-16833.
[37] FERNANDEZ-YAGUE M A, ABBAH S A, MCNAMARA L, et al. Biomimetic approaches in bone tissue engineering: Integrating biological and physicomechanical strategies[J]. Advanced Drug Delivery Reviews, 2015, 84: 1-29.
[38] LIU X J, GAN K, LIU H, et al. Antibacterial properties of nano -silver coated PEEK prepared through magnetron sputtering[J]. De ntal Materials, 2017, 33(9): E348-E360.
[39] YAN J L, XIA D D, ZHOU W H, et al. PH-responsive silk fibroin-based CuO/Ag micro/nano coating endows polyetheretherketone with synergistic antibacterial ability, osteogenesis, and angiogenesis[J]. Acta Biomaterialia, 2020, 115: 220-234.
[40] FRANTZ C, STEWART K M, WEAVER V M. The extracellular matrix at a glance[J]. Journal of Cell Science , 2010, 123(24): 4195-4200.
[41] GHORBANI S, SHAHROKHTASH A, GAUTROT J E, et al. Protein ligand nanopattern size selects for cellular adhesion via hemidesmosomes over focal adhesions[J]. Small Methods, 2022, 6(6): 2200152.
[42] SUNARSO, TSUCHIYA A, FUKUDA N, et al. Effect of micro -roughening of poly(ether ether ketone) on bone marrow derived stem cell and macrophage responses, and osseointegration[J]. Journal of Biomaterials Science , Polymer Edition, 2018, 29(12): 1375-1388.
[43] WANG Y F, YU Z, LI K M, et al. Effects of surface properties of titani um alloys modified by grinding, sandblasting and acidizing and nanosecond laser on cell proliferation and cytoskeleton[J]. Applied Surface Science, 2020, 501 : 144279.
[44] WAN T, JIAO Z X, GUO M, et al. Gaseous sulfur trioxide induced controllable sulfonation promoting biomineralization and osseointegration of polyetheretherketone implants[J]. Bioactive Materials, 2020, 5(4): 1004-1017.
[45] GITTENS R A, OLIVARES-NAVARRETE R, SCHWARTZ Z, et al. Implant osseointegration and the role of microroughness and nanostructure s: lessons for spine implants[J]. Acta Biomaterialia , 2014, 10(8): 3363-3371.
[46] ZANCHETTA E, GUIDI E, GIUSTINA G D, et al. Injection molded polymeric micropatterns for bone regeneration study[J]. ACS Applied Materials & Interfaces, 2015, 7(13): 7273-7281.
[47] PORRELLI D, MARDIROSSIAN M, CRAPISI N, et al. Polyetheretherketone and titanium surface treatments to modify roughness and wettability—improvement of bioactivity and antibacterial properties[J]. Journal of Materials Science & Technology, 2021, 95: 213-224.
[48] ZHANG S M, FENG Z C, HU Y, et al. Endowing polyetheretherketone implants with osseointegration properties: in situ construction of patterned nanorod arrays[J]. Small, 2022, 18(5): 2105589.
[49] MO S, MEHRJOU B, TANG K W, et al. Dimensional-dependent antibacterial behavior on bioactive micro/nano polyetheretherketone (PEEK) arrays[J]. Chemical Engineering Journal, 2020, 392 : 123736.
[50] GANJIAN M, MODARESIFAR K, ROMPOLAS D, et al. Nanoimprinting for high-throughput replication of geometrically precise pillars in fused silica to regulate cell behavior[J]. Acta Biomaterialia , 2022, 140: 717-729.
[51] GORELICK S, RAHKILA P, AR A S, et al. Growth of osteoblasts on lithographically modified surfaces[J]. Nuclear Instruments and Methods in Physics Research Section B: Be am Interactions with Materials & Atoms, 2007, 260(1): 130-135.
[52] LAMERS E, WALBOOMERS X F, DOMANSKI M, et al. The influence of nanoscale grooved substrates on osteoblast behavior and extracellular matrix deposition[J]. Biomaterials, 2010, 31(12): 3307 -3316.
[53] XIE D, XU C H, YE C, et al. Fabrication of submicro -nano structures on polyetheretherketone surface by femtosecond laser for exciting cellular responses of MC3T3-E1 cells/gingival epithelial cells[J]. International Journal of Nanomedicine, 2021, 16: 3201 -3216.
[54] HEITZ J, PLAMADEALA C, WIESBAUER M, et al. Bone -forming cells with pronounced spread into the third dimension in polymer scaffolds fabricated by two-photon polymerization[J]. Journal of Biomedical Materials Research PartA, 2017, 105A(3): 891-899.
[55] XIAO J, WAN Y Z, YANG Z W, et al. Simvastatin -loaded nanotubular mesoporous bioactive glass scaffolds for bone tissue engineering[J]. Microporous and Mesoporous Materials, 2019, 288 : 109570.
[56] GWON Y, PARK S, KIM W, et al. Radially patterned transplantable biodegradable scaffolds as topographically defined contact guidance platforms for accelerating bone regeneration[J]. Journal of Biological Engineering, 2021, 15(1): 12.
[57] HULSHOF F F B, PAPENBURG B, VASILEVICH A, et al. Mining for osteogenic surface topographies: in silico design to in vivo osseo -integration[J]. Biomaterials, 2017, 137: 49 -60.
[58] BETTINGER C J, LANGER R, BORENSTEIN J T. Engineering substrate topography at the micro - and nanoscale to control cell function[J]. Angewandte Chemie International Edition , 2009, 48(30): 5406-5415.
[59] SEO C H, JEONG H, FENG Y, et al. Micropit surfaces designed for accelerating osteogenic differentiation of murine mesenchymal stem cells via enhancing focal adhesion and actin polymerization[J]. Biomaterials, 2014, 35(7): 2245-2252.
[60] KIM C-S, KIM J-H, KIM B, et al. A specific groove pattern can effectively induce osteoblast differentiation[J]. Advanced Functional Materials, 2017, 27(44): 1703569.
[61] GUI N, XU W, MYERS D E, et al. The effect of ordered and partially ordered surface topography on bone cell responses: a review[J]. Biomaterials Science , 2018, 6(2): 250-264.
[62] ELIAZ N, METOKI N. Calcium phosphate bioceramics: a review of their history, structure, properties, coating technologies and biomedical applications[J]. Materials, 2017, 10(4): 334.
[63] OYANE A, NAKAMURA M, SAKAMAKI I, et al. Laser-assisted wet coating of calcium phosphate for surface -functionalization of PEEK[J]. PLoS One, 2018, 13(10): e0206524.
[64] SUNARSO, TSUCHIYA A, TOITA R, et al. Enhanced osseointegration capability of poly(ether ether ketone) via combined phosphate and calcium surface-functionalization[J]. International Journal of Molecular Sciences, 2020, 21(1): 198.
[65] YABUTSUKA T, FUKUSHIMA K, HIRUTA T, et al. Effect of pores formation process and oxygen plasma treatment to hydroxyapatite formation on bioactive PEEK prepared by incorporation of precursor of apatite[J]. Materials Science & Engineering C, 2017, 81: 349-358.
[66] YABUTSUKA T, FUKUSHIMA K, HIRUTA T, et al. Fabrication of bioactive fiber-reinforced PEEK and MXD6 by incorporation of precursor of apatite[J]. Journal of Biomedical Materials Research Part B, 2018, 106B(6): 2254-2265.
[67] MASAMOTO K, FUJIBAYASHI S, YABUTSUKA T, et al. In vivo and in vitro bioactivity of a "precursor of apatite" treatment on polyetheretherketone[J]. Acta Biomaterialia, 2019, 91: 48-59.
[68] AMBARD A J, MUENINGHOFF L. Calcium phosphate cement: review of mechanical and biological properties[J]. Journal of Prosthodontics, 2006, 15(5): 321-328.
[69] LEE J H, JANG H L, LEE K M, et al. In vitro and in vivo evaluation of the bioactivity of hydroxyapatite -coated polyetheretherketone biocomposites created by cold spray technology[J]. Acta Biomaterialia, 2013, 9(4): 6177 -6187.
[70] SUSKA F, OMAR O, EMANUELSSON L, et al. Enhancement of CRF -PEEK osseointegration by plasma -sprayed hydroxyapatite: a rabbit model[J]. Journal of Biomaterials Applications, 2014, 29(2): 234 -242.
[71] JOHANSSON P, BARKARMO S, HAWTHAN M, et al. Biomechanical, histological, and computed X-ray tomographic analyses of hydroxyapatite coated PEEK implants in an extended healing model in rabbit[J]. Journal of Biomedical Materials Research Part A, 2018, 106A(5): 1440-1447.
[72] BAⱾTAN F E, REHMAN M A U, AVCU Y Y, et al. Electrophoretic co -deposition of PEEK-hydroxyapatite composite coatings for biomedical applications[J]. Colloids and Surfaces B: Biointerfaces, 2018, 169: 176-182.
[73] REIGSTAD O, JOHANSSON C, STENPORT V, et al. Differ ent patterns of bone fixation with hydroxyapatite and resorbable CaP coatings in the rabbit tibia at 6, 12, and 52 weeks[J]. Journal of Biomedical Materials Research Part B, 2011, 99B(1): 14-20.
[74] RØKKUM M, REIGSTAD A, JOHANSSON C B, et al. Tissue reactions adjacent to well-fixed hydroxyapatite-coated acetabular cups[J]. The Journal of Bone and Joint Surgery, 2003, 85(3): 440 -447.
[75] BARKARMO S, WENNERBERG A, HOFFMAN M, et al. Nano -hydroxyapatite-coated PEEK implants: a pilot study in rabbit bone[J]. Journal of Biomedical Materials Research Part A, 2013, 101A(2): 465-471.
[76] JOHANSSON P, JIMBO R, KJELLIN P, et al. Biomechanical evaluation and surface characterization of a nano -modified surface on PEEK implants: a study in the rabbit tibia[J]. International Journal o f Nanomedicine, 2014, 9: 3903-3911.
[77] MAHJOUBI H, BUCK E, MANIMUNDA P, et al. Surface phosphonation enhances hydroxyapatite coating adhesion on polyetheretherketone and its osseointegration potential[J]. Acta Biomaterialia, 2017, 47: 149 -158.
[78] BLENDINGER F, SEITZ D, OTTENSCHLÄGER A, et al. Atomic layer deposition of bioactive TiO2 thin films on polyetheretherketone for orthopedic implants[J]. ACS Applied Materials & Interfaces, 2021, 13(3): 3536-3546.
[79] MATSUNO H, YOKOYAMA A, WATARI F, et al. Bioc ompatibility and osteogenesis of refractory metal implants, titanium, hafnium, niobium, tantalum and rhenium[J]. Biomaterials, 2001, 22(11): 1253 -1262.
[80] DOLATSHAHI-PIROUZ A, JENSEN T, KRAFT D C, et al. Fibronectin adsorption, cell adhesion, and proliferatio n on nanostructured tantalum surfaces[J]. ACS Nano, 2010, 4(5): 2874-2882.
[81] HORANDGHADIM N, KHALIL-ALLAFI J, URGEN M. Effect of Ta 2O5content on the osseointegration and cytotoxicity behaviors in hydroxyapatite -Ta 2O5 coatings applied by EPD on superelastic NiTi alloys[J]. Materials Science & Engineering C, 2019, 102: 683 -695.
[82] ASADULLAH S, MEI S Q, WANG D Q, et al. Sulfonated porous surface of tantalum pentoxide/polyimide composite with micro -submicro structures displaying antibacterial performances and stimu lating cell responses[J]. Materials and Design, 2020, 190: 108510.
[83] MAHO A, LINDEN S, ARNOULD C, et al. Tantalum oxide/carbon nanotubes composite coatings on titanium, and their functionalization with organophosphonic molecular films: a high quality scaffold for hydroxyapatite growth[J]. Journal of Colloid and Interface Science , 2012, 371(1): 150-158.
[84] LU T, WEN J, QIAN S, et al. Enhanced osteointegration on tantalum-implanted polyetheretherketone surface with bone -like elastic modulus[J]. Biomaterials, 2015, 51: 173-183.
[85] SEO H-J, CHO Y-E, KIM T, et al. Zinc may increase bone formation through stimulating cell proliferation, alkaline phosphatase activity and collagen synthesis in osteoblastic MC3T3-E1 cells[J]. Nutrition Research and Practice , 2010, 4(5): 356-361.
[86] NAIRN B L, LONERGAN Z R, WANG J F, et al. The response of acinetobacter baumannii to zinc starvation[J]. Cell Host & Microbe, 2016, 19(6): 826-836.
[87] LIU W, LI J H, CHENG M Q, et al. Zinc-modified sulfonated polyetheretherketone surface with immunomodulatory function for guiding cell fate and bone regeneration [J]. Advanced Science, 2018, 5(10): 1800749.
[88] LI F-Y, CHAIGNE-DELALANDE B, KANELLOPOULOU C, et al. Second messenger role for Mg2 + revealed by human T-cell immunodeficiency[J]. Nature, 2011, 475: 471-476.
[89] YU X M, IBRAHIM M, LIU Z Y, et al. Biofunctional Mg coating on PEEK for improving bioactivity[J]. Bioactive Materials, 2018, 3(2): 139-143.
[90] BJELIĆ D, FINŠGAR M. The role of growth factors in bioactive coatings[J]. Pharmaceutics, 2021, 13(7): 1083.
[91] DINJASKI N, PLOWRIGHT R, ZHOU S, et al. Osteoinductive recombinant silk fusion proteins for bone regeneration[J]. Acta Biomaterialia, 2017, 49: 127-139.
[92] TINTUT Y, DEMER L L. Effects of bioactive lipids and lipoproteins on bone[J]. Trends in Endocrinology Metabolism, 2014, 25(2): 53-59.
[93] STEWART C, AKHAVAN B, WISE S G, et al. A review of biomimetic surface functionalization for bone -integrating orthopedic implants: mechan isms, current approaches, and future directions[J]. Progress in Materials Science, 2019, 106: 100588.
[94] WANG C-P J, BYUN M J, KIM S-N, et al. Biomaterials as therapeutic drug carriers for inflammatory bowel disease treatment[J]. Journal of Controlled Release, 2022, 345: 1-19.
[95] AO Q, WANG S L, HE Q, et al. Fibrin glue/fibronectin/heparin-based delivery system of BMP2 induces osteogenesis in MC3T3-E1 cells and bone formation in rat calvarial critical-sized defects[J]. ACS Applied Materials & Interfaces, 2020, 12(11): 13400-13410.
[96] WU J P, LI L L, FU C, et al. Micro-porous polyetheretherketone implants decorated with BMP-2 via phosphorylated gelatin coating for enhancing cell adhesion and osteogenic differentiation[J]. Colloids and Surfaces B :Biointerfaces, 2018, 169: 233-241.
[97] FAN L, GUAN P F, XIAO C R, et al. Exosome -functionalized polyetheretherketone -based implant with immunomodulatory property for enhancing osseointegration[J]. Bioactive Materials, 2021, 6(9): 2754-2766.
[98] XU X, LI Y L, WANG L X, et al. Triple-functional polyetheretherketone surface with enhanced bacteriostasis and anti-inflammatory and osseointegrative properties for implant application[J]. Biomaterials, 2019, 212: 98-114.
[99] GUILLOT R, PIGNOT-PAINTRAND I, LAVAUD J, et al. Assessment of a polyelectrolyte multilayer film coating loaded with BMP-2 on titanium and PEEK implants in the rabbit femoral condyle[J]. Acta Biomaterialia, 2016 , 36: 310-322.
[100]GARRIDO-MESA N, ZARZUELO A, GÁLVEZ J. Minocycline: far beyond an antibiotic[J]. British Journal of Pharmacology, 2013, 169(2): 337-352.
[101]DOUMENG M, MAKHLOUF L, BERTHET F, et al. A comparative study of the crystallinity of polyetheretherketone by using density, DSC, XRD, and Raman spectroscopy techniques[J]. Polymer Testing, 2021, 93 : 106878.

所在学位评定分委会
材料科学与工程系
国内图书分类号
TB34
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/417126
专题工学院_材料科学与工程系
推荐引用方式
GB/T 7714
毛志翔. 基于拓扑结构和钽涂层协同效应的聚醚醚酮表面改性[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032299-毛志翔-材料科学与工程(7397KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[毛志翔]的文章
百度学术
百度学术中相似的文章
[毛志翔]的文章
必应学术
必应学术中相似的文章
[毛志翔]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。