[1] ZHANG H, JI X, YAO H, et al. Review on Efficiency Improvement Effort of Perovskite Solar Cell [J]. Solar Energy, 2022, 233: 421-434.
[2] SUN Q, YIN W J. Thermodynamic Stability Trend of Cubic Perovskites [J]. Journal of the American Chemical Society, 2017, 139(42): 14905-14908.
[3] MAO L, STOUMPOS C C, KANATZIDIS M G. Two-Dimensional Hybrid Halide Perovskites: Principles and Promises [J]. Journal of the American Chemical Society, 2019, 141(3): 1171-1190.
[4] CHEN Y, SUN Y, PENG J, et al. 2D Ruddlesden-Popper Perovskites for Optoelectronics [J]. Advanced Materials, 2018, 30(2): 1703487.
[5] MITZI D B. Templating and Structural Engineering in Organic-Inorganic Perovskites [J]. Journal of the Chemical Society, Dalton Transactions, 2001, 1(1): 1-12.
[6] SMITH M D, CONNOR B A, KARUNADASA H I. Tuning the Luminescence of Layered Halide Perovskites [J]. Chemical Reviews, 2019, 119(5): 3104-3139.
[7] WANG S, MITZI D B, FEILD C A, et al. Synthesis and Characterization of [NH2C(I):NH2]3MI5 (M = Sn, Pb): Stereochemical Activity in Divalent Tin and Lead Halides Containing Single <110> Perovskite Sheets [J]. Journal of the American Chemical Society, 2002, 117(19): 5297-5302.
[8] RAHAMAN M Z, GE S P, LIN C H, et al. One-Dimensional Molecular Metal Halide Materials: Structures, Properties, and Applications [J]. Small Structures, 2021, 2(4): 2000062.
[9] LI M, XIA Z. Recent Progress of Zero-Dimensional Luminescent Metal Halides [J]. Chemical Society Reviews, 2021, 50(4): 2626-2662.
[10] ZHOU C, XU L J, LEE S, et al. Recent Advances in Luminescent Zero-Dimensional Organic Metal Halide Hybrids [J]. Advanced Optical Materials, 2021, 9(18): 2001766.
[11] ZHOU L, LIAO J F, KUANG D B. An Overview for Zero-Dimensional Broadband Emissive Metal-Halide Single Crystals [J]. Advanced Optical Materials, 2021, 9(17): 2100544.
[12] SMITH M D, KARUNADASA H I. White-Light Emission from Layered Halide Perovskites [J]. Accounts of Chemical Research, 2018, 51(3): 619-627.
[13] TAKAGI H, KUNUGITA H, EMA K. Influence of the Image Charge Effect on Excitonic Energy Structure in Organic-Inorganic Multiple Quantum Well Crystals [J]. Physical Review B, 2013, 87(12): 125421.
[14] SMITH M D, PEDESSEAU L, KEPENEKIAN M, et al. Decreasing the Electronic Confinement in Layered Perovskites through Intercalation [J]. Chemical Science, 2017, 8(3): 1960-1968.
[15] QIN Y Y, SHE P F, HUANG X M, et al. Luminescent Manganese(II) Complexes: Synthesis, Properties and Optoelectronic Applications [J]. Coordination Chemistry Reviews, 2020, 416: 213331.
[16] SU B, ZHOU G, HUANG J, et al. Mn2+-Doped Metal Halide Perovskites: Structure, Photoluminescence, and Application [J]. Laser & Photonics Reviews, 2021, 15(1): 2000334.
[17] TAO P, LIU S J, WONG W Y. Phosphorescent Manganese(II) Complexes and Their Emerging Applications [J]. Advanced Optical Materials, 2020, 8(20): 2000985.
[18] JIANG X, XIA S, ZHANG J, et al. Exploring Organic Metal Halides with Reversible Temperature-Responsive Dual-Emissive Photoluminescence [J]. ChemSusChem, 2019, 12(24): 5228-5232.
[19] ZHOU G, LIU Z, HUANG J, et al. Unraveling the Near-Unity Narrow-Band Green Emission in Zero-Dimensional Mn2+-Based Metal Halides: A Case Study of (C10H16N)2Zn1-xMnxBr4 Solid Solutions [J]. The Journal of Physical Chemistry Letters, 2020, 11(15): 5956-5962.
[20] ZHOU G J, LIU Z Y, MOLOKEEV M S, et al. Manipulation of Cl/Br Transmutation in Zero-Dimensional Mn2+-Based Metal Halides toward Tunable Photoluminescence and Thermal Quenching Behaviors [J]. Journal of Materials Chemistry C, 2021, 9(6): 2047-2053.
[21] SPANOPOULOS I, HADAR I, KE W, et al. Water-Stable 1D Hybrid Tin(II) Iodide Emits Broad Light with 36% Photoluminescence Quantum Efficiency [J]. Journal of the American Chemical Society, 2020, 142(19): 9028-9038.
[22] KARIM M M S, GANOSE A M, PIETERS L, et al. Anion Distribution, Structural Distortion, and Symmetry-Driven Optical Band Gap Bowing in Mixed Halide Cs2SnX6 Vacancy Ordered Double Perovskites [J]. Chemistry of Materials, 2019, 31(22): 9430-9444.
[23] MAUGHAN A E, GANOSE A M, ALMAKER M A, et al. Tolerance Factor and Cooperative Tilting Effects in Vacancy-Ordered Double Perovskite Halides [J]. Chemistry of Materials, 2018, 30(11): 3909-3919.
[24] MAUGHAN A E, GANOSE A M, SCANLON D O, et al. Perspectives and Design Principles of Vacancy-Ordered Double Perovskite Halide Semiconductors [J]. Chemistry of Materials, 2019, 31(4): 1184-1195.
[25] NAZARENKO O, KOTYRBA M R, YAKUNIN S, et al. Guanidinium and Mixed Cesium-Guanidinium Tin(II) Bromides: Effects of Quantum Confinement and Out-of-Plane Octahedral Tilting [J]. Chemistry of Materials, 2019, 31(6): 2121-2129.
[26] WANG A, GUO Y, ZHOU Z, et al. Aqueous Acid-Based Synthesis of Lead-Free Tin halide Perovskites with Near-Unity Photoluminescence Quantum Efficiency [J]. Chemical Science, 2019, 10(17): 4573-4579.
[27] SU B, SONG G, MOLOKEEV M S, et al. Synthesis, Crystal Structure and Green Luminescence in Zero-Dimensional Tin Halide (C8H14N2)2SnBr6 [J]. Inorganic Chemistry, 2020, 59(14): 9962-9968.
[28] SUN M E, LI Y, DONG X Y, et al. Thermoinduced Structural-Transformation and Thermochromic Luminescence in Organic Manganese Chloride Crystals [J]. Chemical Science, 2019, 10(13): 3836-3839.
[29] JODLOWSKI A D, YEPEZ A, LUQUE R, et al. Benign-by-Design Solventless Mechanochemical Synthesis of Three-, Two-, and One-Dimensional Hybrid Perovskites [J]. Angewandte Chemie International Edition, 2016, 55(48): 14972-14977.
[30] ELLEUCH S, LUSSON A, PILLET S, et al. White Light Emission from a Zero-Dimensional Lead Chloride Hybrid Material [J]. ACS Photonics, 2020, 7(5): 1178-1187.
[31] PENG H, WANG X, TIAN Y, et al. Highly Efficient Cool-White Photoluminescence of (Gua)3Cu2I5 Single Crystals: Formation and Optical Properties [J]. ACS Applied Materials & Interfaces, 2021, 13(11): 13443-13451.
[32] ZHOU C K, LEE S J, LIN H R, et al. Bulk Assembly of Multicomponent Zero-Dimensional Metal Halides with Dual Emission [J]. ACS Materials Letters, 2020, 2(4): 376-380.
[33] XU L J, LEE S, LIN X, et al. Multicomponent Organic Metal Halide Hybrid with White Emissions [J]. Angewandte Chemie International Edition, 2020, 59: 14120-14123.
[34] LI M, ZHOU J, ZHOU G, et al. Hybrid Metal Halides with Multiple Photoluminescence Centers [J]. Angewandte Chemie International Edition, 2019, 58(51): 18670-18675.
[35] ZHOU C, TIAN Y, WANG M, et al. Low-Dimensional Organic Tin Bromide Perovskites and Their Photoinduced Structural Transformation [J]. Angewandte Chemie International Edition, 2017, 56(31): 9018-9022.
[36] WORKU M, TIAN Y, ZHOU C, et al. Sunlike White-Light-Emitting Diodes Based on Zero-Dimensional Organic Metal Halide Hybrids [J]. ACS Applied Materials & Interfaces, 2018, 10(36): 30051-30057.
[37] ZHOU C, WORKU M, NEU J, et al. Facile Preparation of Light Emitting Organic Metal Halide Crystals with Near-Unity Quantum Efficiency [J]. Chemistry of Materials, 2018, 30(7): 2374-2378.
[38] XU L J, SUN C Z, XIAO H, et al. Green-Light-Emitting Diodes based on Tetrabromide Manganese(II) Complex through Solution Process [J]. Advanced Materials, 2017, 29(10): 1605739.
[39] MORAD V, CHERNIUKH I, POTTSCHACHER L, et al. Manganese(II) in Tetrahedral Halide Environment: Factors Governing Bright Green Luminescence [J]. Chemistry of Materials, 2019, 31(24): 10161-10169.
[40] MAO L, GUO P, WANG S, et al. Design Principles for Enhancing Photoluminescence Quantum Yield in Hybrid Manganese Bromides [J]. Journal of the American Chemical Society, 2020, 142(31): 13582-13589.
[41] SONG G, LI M, YANG Y, et al. Lead-Free Tin(IV)-Based Organic-Inorganic Metal Halide Hybrids with Excellent Stability and Blue-Broadband Emission [J]. The Journal of Physical Chemistry Letters, 2020, 11(5): 1808-1813.
[42] SUN C, JIANG K, HAN M-F, et al. A Zero-Dimensional Hybrid Lead Perovskite with Highly Efficient Blue-Violet Light Emission [J]. Journal of Materials Chemistry C, 2020, 8(34): 11890-11895.
[43] ZHOU C, LIN H, SHI H, et al. A Zero-Dimensional Organic Seesaw-Shaped Tin Bromide with Highly Efficient Strongly Stokes-Shifted Deep-Red Emission [J]. Angewandte Chemie International Edition, 2018, 57(4): 1021-1024.
[44] ZHOU L, LIAO J F, HUANG Z G, et al. Intrinsic Self-Trapped Emission in 0D Lead-Free (C4H14N2)2In2Br10 Single Crystal [J]. Angewandte Chemie International Edition, 2019, 58(43): 15435-15440.
[45] ZHOU L, LIAO J F, HUANG Z G, et al. A Highly Red-Emissive Lead-Free Indium-Based Perovskite Single Crystal for Sensitive Water Detection [J]. Angewandte Chemie International Edition, 2019, 58(16): 5277-5281.
[46] GAUTIER R, PARIS M, MASSUYEAU F. Exciton Self-Trapping in Hybrid Lead Halides: Role of Halogen [J]. Journal of the American Chemical Society, 2019, 141(32): 12619-12623.
[47] SONG K S, WILLIAMS R T. Self-Trapped Excitons [M]. 1 ed.: Springer-Verlag, 1993.
[48] WANG Z, ZHANG Z, TAO L, et al. Hybrid Chloroantimonates(III): Thermally Induced Triple-Mode Reversible Luminescent Switching and Laser-Printable Rewritable Luminescent Paper [J]. Angewandte Chemie International Edition, 2019, 58(29): 9974-9978.
[49] LI S, LUO J, LIU J, et al. Self-Trapped Excitons in All-Inorganic Halide Perovskites: Fundamentals, Status, and Potential Applications [J]. The Journal of Physical Chemistry Letters, 2019, 10(8): 1999-2007.
[50] LIU M M, WAN Q, WANG H M, et al. Suppression of Temperature Quenching in Perovskite Nanocrystals for Efficient and Thermally Stable Light-Emitting Diodes [J]. Nature Photonics, 2021, 15(5): 379-385.
[51] LUO J, WANG X, LI S, et al. Efficient and Stable Emission of Warm-White Light from Lead-Free Halide Double Perovskites [J]. Nature, 2018, 563(7732): 541-545.
[52] LI Z Y, LI Y, LIANG P, et al. Dual-Band Luminescent Lead-Free Antimony Chloride Halides with Near-Unity Photoluminescence Quantum Efficiency [J]. Chemistry of Materials, 2019, 31(22): 9363-9371.
[53] ZHOU G J, DING J L, JIANG X X, et al. Coordination Units of Mn2+ Modulation toward Tunable Emission in Zero-Dimensional Bromides for White Light-emitting diodes [J]. Journal of Materials Chemistry C, 2022, 10: 2095-2102.
[54] PENG H, ZOU B, GUO Y, et al. Evolution of the Structure and Properties of Mechanochemically Synthesized Pyrrolidine Incorporated Manganese Bromide Powders [J]. Journal of Materials Chemistry C, 2020, 8(19): 6488-6495.
[55] MEI Y, YU H, WEI Z, et al. Two Coordinated Geometries of Mn2+ Ions in One Single Molecule: Organic-Inorganic Hybrids Constructed with Tris(2-aminoethyl)amine and Manganese Halide and Fluorescent Properties [J]. Polyhedron, 2017, 127: 458-463.
[56] TANG X, ACKERMAN M M, GUYOT-SIONNEST P. Thermal Imaging with Plasmon Resonance Enhanced HgTe Colloidal Quantum Dot Photovoltaic Devices [J]. ACS Nano, 2018, 12(7): 7362-7370.
[57] MARCINIAK L, KNIEC K, ELZBIECIAK-PIECKA K, et al. Luminescence Thermometry with Transition Metal Ions. A Review [J]. Coordination Chemistry Reviews, 2022, 469: 214671.
[58] MCCALL K M, MORAD V, BENIN B M, et al. Efficient Lone-Pair-Driven Luminescence: Structure-Property Relationships in Emissive 5s2 Metal Halides [J]. ACS Materials Letters, 2020, 2(9): 1218-1232.
[59] YAKUNIN S, BENIN B M, SHYNKARENKO Y, et al. High-Resolution Remote Thermometry and Thermography using Luminescent Low-Dimensional Tin-Halide Perovskites [J]. Nature Materials, 2019, 18(8): 846-852.
[60] ZHOU C, TIAN Y, YUAN Z, et al. Highly Efficient Broadband Yellow Phosphor Based on Zero-Dimensional Tin Mixed-Halide Perovskite [J]. ACS Applied Materials & Interfaces, 2017, 9(51): 44579-44583.
[61] MORAD V, YAKUNIN S, BENIN B M, et al. Hybrid 0D Antimony Halides as Air-Stable Luminophores for High-Spatial-Resolution Remote Thermography [J]. Advanced Materials, 2021, 33(9): 2007355.
[62] MORAD V, YAKUNIN S, KOVALENKO M V. Supramolecular Approach for Fine-Tuning of the Bright Luminescence from Zero-Dimensional Antimony(III) Halides [J]. ACS Materials Letters, 2020, 2(7): 845-852.
[63] WEI J H, LUO J B, LIAO J F, et al. Te4+-Doped Cs2InCl5·H2O Single Crystals for Remote Optical Thermometry [J]. Science China Materials, 2022, 65(3): 764-772.
[64] BENIN B M, MCCALL K M, WORLE M, et al. The Rb7Bi3-3xSb3xCl16 Family: A Fully Inorganic Solid Solution with Room-Temperature Luminescent Members [J]. Angewandte Chemie International Edition, 2020, 59(34): 14490-14497.
[65] WU N, CHEN C, LIN S, et al. Zero-Dimensional Antimony(III) Halides Templated by Ruthenium Complexes: Photoluminescence, Thermochromism and Photo/Electrical Performances [J]. Inorganic and Nano-Metal Chemistry, 2022: 1-9.
[66] WANG Z, HUANG X. Luminescent Organic-Inorganic Hybrid Metal Halides: An Emerging Class of Stimuli-Responsive Materials [J]. Chemistry-A European Journal, 2022, 28(37): e202200609.
[67] ZHANG Z, LIN Y, JIN J, et al. Crystalline-Phase-Recognition-Induced Domino Phase Transition and Luminescence Switching for Advanced Information Encryption [J]. Angewandte Chemie International Edition, 2021, 60(43): 23373-23379.
[68] WANG Z, XIE D, ZHANG F, et al. Controlling Information Duration on Rewritable Luminescent Paper Based on Hybrid Antimony (III) Chloride/Small-Molecule Absorbates [J]. Science Advances, 2020, 6(48): eabc2181.
[69] WEI J H, OU W T, LUO J B, et al. Zero-Dimensional Zn-Based Halides with Ultra-Long Room-Temperature Phosphorescence for Time-Resolved Anti-Counterfeiting [J]. Angewandte Chemie International Edition, 2022, 61(33): 202207985.
[70] SHEN Y, LIU Y, YE H, et al. Centimeter-Sized Single Crystal of Two-Dimensional Halide Perovskites Incorporating Straight-Chain Symmetric Diammonium Ion for X-Ray Detection [J]. Angewandte Chemie International Edition, 2020, 59(35): 14896-14902.
[71] XU L J, LIN X, HE Q, et al. Highly Efficient Eco-Friendly X-Ray Scintillators Based on an Organic Manganese Halide [J]. Nature Communications, 2020, 11(1): 4329.
[72] XIAO Z, MENG W, WANG J, et al. Searching for Promising New Perovskite-Based Photovoltaic Absorbers: the Importance of Electronic Dimensionality [J]. Materials Horizons, 2017, 4(2): 206-216.
[73] GAUTIER R, PARIS M, MASSUYEAU F. Hydrogen Bonding and Broad-Band Emission in Hybrid Zinc Halide Phosphors [J]. Inorganic Chemistry, 2020, 59(5): 2626-2630.
[74] MANZHOS S, PAL A, CHEN Y, et al. Effect of organic cation states on electronic properties of mixed organic–inorganic halide perovskite clusters [J]. Physical Chemistry Chemical Physics, 2019, 21(15): 8161-8169.
[75] LEE J W, TAN S, SEOK S I, et al. Rethinking the A cation in halide perovskites [J]. Science, 2022, 375(6583): eabj1186.
[76] FU Y, JIANG X, LI X, et al. Cation Engineering in Two-Dimensional Ruddlesden-Popper Lead Iodide Perovskites with Mixed Large A-Site Cations in the Cages [J]. Journal of the American Chemical Society, 2020, 142(8): 4008-4021.
[77] XUE J, WANG R, CHEN X, et al. Reconfiguring the Band-Edge States of Photovoltaic Perovskites by Conjugated Organic Cations [J]. Science, 2021, 371(6529): 636-640.
[78] SI H, ZHANG Z, LIAO Q, et al. A-Site Management for Highly Crystalline Perovskites [J]. Advanced Materials, 2020, 32(4): e1904702.
[79] SUN S, LU M, GAO X, et al. 0D Perovskites: Unique Properties, Synthesis, and Their Applications [J]. Advanced Science, 2021, 8(24): 2102689.
[80] JIN J-C, SHEN N-N, WANG Z-P, et al. Photoluminescent Ionic Metal Halides Based on s2 Typed Ions and Aprotic Ionic Liquid Cations [J]. Coordination Chemistry Reviews, 2021, 448: 214185.
[81] ZHOU C, LIN H, WORKU M, et al. Blue Emitting Single Crystalline Assembly of Metal Halide Clusters [J]. Journal of the American Chemical Society, 2018, 140(41): 13181-13184.
[82] LEE S, ZHOU C, NEU J, et al. Bulk Assemblies of Lead Bromide Trimer Clusters with Geometry-Dependent Photophysical Properties [J]. Chemistry of Materials, 2019, 32(1): 374-380.
[83] ZHOU C, LIN H, NEU J, et al. Green Emitting Single-Crystalline Bulk Assembly of Metal Halide Clusters with Near-Unity Photoluminescence Quantum Efficiency [J]. Acs Energy Letters, 2019, 4(7): 1579-1583.
[84] LI M Z, MOLOKEEV M S, ZHAO J, et al. Optical Functional Units in Zero-Dimensional Metal Halides as a Paradigm of Tunable Photoluminescence and Multicomponent Chromophores [J]. Advanced Optical Materials, 2020, 8(8): 1902114.
[85] LI Q, CHEN Z, LI M, et al. Pressure-Engineered Photoluminescence Tuning in Zero-Dimensional Lead Bromide Trimer Clusters [J]. Angewandte Chemie International Edition, 2021, 60(5): 2583-2587.
[86] ZHOU C, LEE S, LIN H, et al. Bulk Assembly of Multicomponent Zero-Dimensional Metal Halides with Dual Emission [J]. ACS Materials Letters, 2020: 376-380.
[87] SHEN N, LI J, WU Z, et al. alpha- and beta-[Bmim][BiCl4(2,2'-bpy)]: Two Polymorphic Bismuth-Containing Ionic Liquids with Crystallization-Induced Phosphorescence [J]. Chemistry, 2017, 23(62): 15795-15804.
[88] SHEN N N, CAI M L, SONG Y, et al. Supramolecular Organization of [TeCl6]2- with Ionic Liquid Cations: Studies on the Electrical Conductivity and Luminescent Properties [J]. Inorganic Chemistry, 2018, 57(9): 5282-5291.
[89] SHEN N, LI J, LI G, et al. Designing Polymorphic Bi3+-Containing Ionic Liquids for Stimuli-Responsive Luminescent Materials [J]. Inorganic Chemistry, 2019, 58(12): 8079-8085.
[90] LIN F, WANG H, LIU W, et al. Zero-Dimensional Ionic Antimony Halide Inorganic-Organic Hybrid with Strong Greenish Yellow Emission [J]. Journal of Materials Chemistry C, 2020, 8(22): 7300-7303.
[91] YU S S, JIANG S X, ZHANG H, et al. Crystal Structural and Thermochromic Luminescence Properties Modulation by Ion Liquid Cations in Bromoplumbate Perovskites [J]. Inorganic Chemistry Communications, 2020, 112: 107690.
[92] LIN F, WANG H, LIN H, et al. An Antimony Based Organic-Inorganic Hybrid Coating Material with High Quantum Efficiency and Thermal Quenching Effect [J]. Chemical Communications, 2021, 57(14): 1754-1757.
[93] WANG Z P, WANG J Y, LI J R, et al. [Bmim]2SbCl5: a Main Group Metal-Containing Ionic Liquid Exhibiting Tunable Photoluminescence and White-Light Emission [J]. Chemical Communications, 2015, 51(15): 3094-3097.
[94] XU L J, PLAVIAK A, LIN X, et al. Metal Halide Regulated Photophysical Tuning of Zero-Dimensional Organic Metal Halide Hybrids: From Efficient Phosphorescence to Ultralong Afterglow [J]. Angewandte Chemie International Edition, 2020, 59(51): 23067-23071.
[95] LI C, LUO Z S, LIU Y L, et al. Self-Trapped Exciton Emission with High Thermal Stability in Antimony-Doped Hybrid Manganese Chloride [J]. Advanced Optical Materials, 2022, 10(12): 2102746.
[96] LIU S, FANG X, LU B, et al. Wide Range Zero-Thermal-Quenching Ultralong Phosphorescence from Zero-Dimensional Metal Halide Hybrids [J]. Nature Communications, 2020, 11(1): 4649.
[97] LUO Z, LIU Y, LIU Y, et al. Integrated Afterglow and Self-Trapped Exciton Emissions in Hybrid Metal Halides for Anti-Counterfeiting Applications [J]. Advanced Materials, 2022, 34(18): 2200607.
[98] XU J, LI S, QIN C, et al. Identification of Singlet Self-Trapped Excitons in a New Family of White-Light-Emitting Zero-Dimensional Compounds [J]. The Journal of Physical Chemistry C, 2020, 124(21): 11625-11630.
[99] HUANG J L, SU B B, SONG E H, et al. Ultra-Broad-Band-Excitable Cu(I)-Based Organometallic Halide with Near-Unity Emission for Light-Emitting Diode Applications [J]. Chemistry of Materials, 2021, 33(12): 4382-4389.
[100] LI S, XU J, LI Z G, et al. One-Dimensional Lead-Free Halide with Near-Unity Greenish-Yellow Light Emission [J]. Chemistry of Materials, 2020, 32(15): 6525-6531.
[101] HUANG J, PENG Y, JIN J, et al. Unveiling White Light Emission of a One-Dimensional Cu(I)-Based Organometallic Halide toward Single-Phase Light-Emitting Diode Applications [J]. The Journal of Physical Chemistry Letters, 2021, 12(51): 12345-12351.
[102] ZHU C, JIN J, GAO M, et al. Supramolecular Assembly of Halide Perovskite Building Blocks [J]. Journal of the American Chemical Society, 2022, 144(27): 12450-12458.
[103] ZHAO J, ZHANG T, DONG X Y, et al. Circularly Polarized Luminescence from Achiral Single Crystals of Hybrid Manganese Halides [J]. Journal of the American Chemical Society, 2019, 141(40): 15755-15760.
[104] KATAN C, MERCIER N, EVEN J. Quantum and Dielectric Confinement Effects in Lower-Dimensional Hybrid Perovskite Semiconductors [J]. Chemical Reviews, 2019, 119(5): 3140-3192.
[105] MAO L, GUO P, KEPENEKIAN M, et al. Structural Diversity in White-Light-Emitting Hybrid Lead Bromide Perovskites [J]. Journal of the American Chemical Society, 2018, 140(40): 13078-13088.
[106] MAO L, KE W, PEDESSEAU L, et al. Hybrid Dion-Jacobson 2D Lead Iodide Perovskites [J]. Journal of the American Chemical Society, 2018, 140(10): 3775-3783.
[107] STOUMPOS C C, SOE C M M, TSAI H, et al. High Members of the 2D Ruddlesden-Popper Halide Perovskites: Synthesis, Optical Properties, and Solar Cells of (CH3(CH2)3NH3)2(CH3NH3)4Pb5I16 [J]. Chemistry, 2017, 2(3): 427-440.
[108] STOUMPOS C C, CAO D H, CLARK D J, et al. Ruddlesden-Popper Hybrid Lead Iodide Perovskite 2D Homologous Semiconductors [J]. Chemistry of Materials, 2016, 28(8): 2852-2867.
[109] DOHNER E R, HOKE E T, KARUNADASA H I. Self-Assembly of Broadband White-Light Emitters [J]. Journal of the American Chemical Society, 2014, 136(5): 1718-1721.
[110] DOHNER E R, JAFFE A, BRADSHAW L R, et al. Intrinsic White-Light Emission from Layered Hybrid Perovskites [J]. Journal of the American Chemical Society, 2014, 136(38): 13154-13157.
[111] SMITH M D, JAFFE A, DOHNER E R, et al. Structural Origins of Broadband Emission from Layered Pb-Br Hybrid Perovskites [J]. Chemical Science, 2017, 8(6): 4497-4504.
[112] SU B, GENG S, XIAO Z, et al. Highly Distorted Antimony(III) Chloride [Sb2Cl8]2- Dimers for Near-Infrared Luminescence up to 1070 nm [J]. Angewandte Chemie International Edition, 2022, 61(33): 202208881.
[113] WU Z, ZHANG W, YE H, et al. Bromine-Substitution-Induced High-Tc Two-Dimensional Bilayered Perovskite Photoferroelectric [J]. Journal of the American Chemical Society, 2021, 143(20): 7593-7598.
[114] YAO Y, JIANG H, PENG Y, et al. High-Curie Temperature Multilayered Hybrid Double Perovskite Photoferroelectrics Induced by Aromatic Cation Alloying [J]. Journal of the American Chemical Society, 2021, 143(39): 15900-15906.
[115] SHEIKH T, MAQBOOL S, MANDAL P, et al. Introducing Intermolecular Cation-π Interactions for Water-Stable Low Dimensional Hybrid Lead Halide Perovskites [J]. Angewandte Chemie International Edition, 2021, 60(33): 18265-18271.
[116] CAO D H, STOUMPOS C C, FARHA O K, et al. 2D Homologous Perovskites as Light-Absorbing Materials for Solar Cell Applications [J]. Journal of the American Chemical Society, 2015, 137(24): 7843-7850.
[117] SOURISSEAU S, LOUVAIN N, BI W, et al. Reduced Band Gap Hybrid Perovskites Resulting from Combined Hydrogen and Halogen Bonding at the Organic-Inorganic Interface [J]. Chemistry of Materials, 2007, 19(3): 600-607.
[118] BRAUN M, TUFFENTSAMMER W, WACHTEL H, et al. Tailoring of Energy Levels in Lead Chloride Based Layered Perovskites and Energy Transfer between the Organic and Inorganic Planes [J]. Chemical Physics Letters, 1999, 303: 157-164.
[119] GONG L K, HU Q Q, HUANG F Q, et al. Efficient Modulation of Photoluminescence by Hydrogen Bonding Interactions between Inorganic [MnBr4]2- Anions and Organic Cations [J]. Chemical Communications, 2019, 55(51): 7303-7306.
[120] MAO L, WU Y, STOUMPOS C C, et al. Tunable White-Light Emission in Single-Cation-Templated Three-Layered 2D Perovskites (CH3CH2NH3)4Pb3Br10–xClx [J]. Journal of the American Chemical Society, 2017, 139(34): 11956-11963.
[121] LI Q, XU B, CHEN Z W, et al. Excitation-Dependent Emission Color Tuning of 0D Cs2InBr5·H2O at High Pressure [J]. Advanced Functional Materials, 2021, 31(38): 2104923.
[122] ZHANG L, WANG K, LIN Y, et al. Pressure Effects on the Electronic and Optical Properties in Low-Dimensional Metal Halide Perovskites [J]. The Journal of Physical Chemistry Letters, 2020, 11(12): 4693-4701.
[123] LU X, STOUMPOS C, HU Q, et al. Regulating Off-Centering Distortion Maximizes Photoluminescence in Halide Perovskites [J]. National Science Review, 2021, 8(9): nwaa288.
[124] BRAMMER L, SWEARINGEN J K, BRUTON E A, et al. Hydrogen Bonding and Perhalometallate Ions: a Supramolecular Synthetic Strategy for New Inorganic Materials [J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(8): 4956-4961.
[125] AAKERöY C B, SEDDON K R. The Hydrogen Bond and Crystal Engineering [J]. Chemical Society Reviews, 1993, 22(6): 397-407.
[126] LIU X T, YANG Z Q, GE C D, et al. Multiple Hydrogen Bond-Induced Structural Distortion for Broadband White-Light Emission in Two-Dimensional Perovskites [J]. CCS Chemistry, 2021, 3(10): 2576-2583.
[127] YANG W, XIAO X, HE H, et al. Intermolecular Hydrogen-Bonding Correlated Structure Distortion and Broadband White-Light Emission in 5-Ammonium Valeric Acid Templated Lead Chloride Perovskites [J]. Crystal Growth & Design, 2021, 21(10): 5731-5739.
[128] MERCIER N, POIROUX S, RIOU A, et al. Unique Hydrogen Bonding Correlating with a Reduced Band Gap and Phase Transition in the Hybrid Perovskites (HO(CH2)2NH3)2PbX4 (X = I, Br) [J]. Inorganic Chemistry, 2004, 43(26): 8361-8366.
[129] HUA X N, GAO J X, CHEN X G, et al. Ultrahigh Phase Transition Temperature in a Metal-Halide Perovskite-Type Material Containing Unprecedented Hydrogen Bonding Interactions [J]. Dalton Transactions, 2019, 48(19): 6621-6626.
[130] SONG G M, LI M Z, ZHANG S Z, et al. Enhancing Photoluminescence Quantum Yield in 0D Metal Halides by Introducing Water Molecules [J]. Advanced Functional Materials, 2020, 30(32): 2002468.
[131] TUREDI B, LEE K J, DURSUN I, et al. Water-Induced Dimensionality Reduction in Metal-Halide Perovskites [J]. The Journal of Physical Chemistry C, 2018, 122(25): 14128-14134.
[132] YU G, LIN F, ZHOU K, et al. One-Dimensional Organic-Metal Halide with Highly Efficient Warm White-Light Emission and Its Moisture-Induced Structural Transformation [J]. Chemistry of Materials, 2021, 33(14): 5668-5674.
[133] CUI B B, HAN Y, HUANG B, et al. Locally Collective Hydrogen Bonding Isolates Lead Octahedra for White Emission Improvement [J]. Nature Communications, 2019, 10(1): 5190.
[134] LUO J B, WEI J H, ZHANG Z Z, et al. Water-Molecule-Induced Emission Transformation of Zero-Dimension Antimony-Based Metal Halide [J]. Inorganic Chemistry, 2022, 61(1): 338-345.
[135] SVANE K L, FORSE A C, GREY C P, et al. How Strong Is the Hydrogen Bond in Hybrid Perovskites? [J]. The Journal of Physical Chemistry Letters, 2017, 8(24): 6154-6159.
[136] LIU W, ZHU K, TEAT S J, et al. All-in-One: Achieving Robust, Strongly Luminescent and Highly Dispersible Hybrid Materials by Combining Ionic and Coordinate Bonds in Molecular Crystals [J]. Journal of the American Chemical Society, 2017, 139(27): 9281-9290.
[137] ROBINSON K, GIBBS G V, RIBBE P H. Quadratic Elongation: a Quantitative Measure of Distortion in Coordination Polyhedra [J]. Science, 1971, 172(3983): 567-570.
[138] XIAO G, FANG X, MA Y J, et al. Multi-Mode and Dynamic Persistent Luminescence from Metal Cytosine Halides through Balancing Excited-State Proton Transfer [J]. Advanced Science, 2022, 9: 2200992.
[139] WU S, ZHOU B, YAN D. Low-Dimensional Organic Metal Halide Hybrids with Excitation-Dependent Optical Waveguides from Visible to Near-Infrared Emission [J]. ACS Applied Materials & Interfaces, 2021, 13(22): 26451-26460.
[140] ZHOU B, XIAO G, YAN D. Boosting Wide-Range Tunable Long-Afterglow in 1D Metal-Organic Halide Micro/Nanocrystals for Space/Time-Resolved Information Photonics [J]. Advanced Materials, 2021, 33(16): 2007571.
[141] STADLER W, HOFMANN D M, ALT H C, et al. Optical Investigations of Defects in Cd1-xZnxTe [J]. Physical Review B, 1995, 51(16): 10619-10630.
[142] WU G, ZHOU C, MING W, et al. A One-Dimensional Organic Lead Chloride Hybrid with Excitation-Dependent Broadband Emissions [J]. Acs Energy Letters, 2018, 3(6): 1443-1449.
[143] EBSWORTH E A V, SHEPPARD N. The Infra-Red Spectra of Some Methylammonium Iodides: Angle Deformation Frequencies of N+H and N+H2 Groups [J]. Spectrochimica Acta, 1959, 13(4): 261-270.
[144] GUZONAS D A, IRISH D E. A Raman and Infrared Spectroscopic Study of Triethylenediamine (DABCO) and Its Protonated Forms [J]. Canadian Journal of Chemistry-Revue Canadienne De Chimie, 1988, 66(5): 1249-1257.
[145] MERZLYAKOVA E, WOLF S, LEBEDKIN S, et al. 18-Crown-6 Coordinated Metal Halides with Bright Luminescence and Nonlinear Optical Effects [J]. J Am Chem Soc, 2021, 143(2): 798-804.
[146] SUN J-S, ZHAO H, OUYANG X, et al. Structures, Magnetic Properties, and Reactivity Studies of Salts Containing the Dinuclear Anion [M2Cl6]2- (M = Mn, Fe, Co) [J]. Inorganic Chemistry, 1999, 38(25): 5841-5855.
[147] PAMPALONI G, ENGLERT U. Tetrahydrofuran and 1,2-Dimethoxyethane Derivatives of Vanadium(II) and Vanadium(III) [J]. Inorganica Chimica Acta, 1995, 231(1-2): 167-173.
[148] HU G C, XU B, WANG A F, et al. Stable and Bright Pyridine Manganese Halides for Efficient White Light-Emitting Diodes [J]. Advanced Functional Materials, 2021, 31(19): 2011191.
[149] WANG Z X, LI P F, LIAO W Q, et al. Structure-Triggered High Quantum Yield Luminescence and Switchable Dielectric Properties in Manganese(II) Based Hybrid Compounds [J]. Chemistry-An Asian Journal, 2016, 11(7): 981-985.
[150] LI C, BAI X, GUO Y, et al. Tunable Emission Properties of Manganese Chloride Small Single Crystals by Pyridine Incorporation [J]. ACS Omega, 2019, 4(5): 8039-8045.
[151] ZHANG Y Z, SUN D S, CHEN X G, et al. Optical-Dielectric Duple Bistable Switches: Photoluminescence of Reversible Phase Transition Molecular Material [J]. Chemistry-An Asian Journal, 2019, 14(21): 3863-3867.
[152] LI Q, CHEN Z, YANG B, et al. Pressure-Induced Remarkable Enhancement of Self-Trapped Exciton Emission in One-Dimensional CsCu2I3 with Tetrahedral Units [J]. Journal of the American Chemical Society, 2020, 142(4): 1786-1791.
[153] BAI X W, ZHONG H Z, CHEN B K, et al. Pyridine-Modulated Mn Ion Emission Properties of C10H12N2MnBr4 and C5H6NMnBr3 Single Crystals [J]. The Journal of Physical Chemistry C, 2018, 122(5): 3130-3137.
[154] LIN H, ZHOU C, TIAN Y, et al. Bulk Assembly of Organic Metal Halide Nanotubes [J]. Chemical Science, 2017, 8(12): 8400-8404.
[155] LIN H R, ZHOU C K, NEU J, et al. Bulk Assembly of Corrugated 1D Metal Halides with Broadband Yellow Emission [J]. Advanced Optical Materials, 2019, 7(6): 1801474.
[156] FU P, HUANG M, SHANG Y, et al. Organic-Inorganic Layered and Hollow Tin Bromide Perovskite with Tunable Broadband Emission [J]. ACS Applied Materials & Interfaces, 2018, 10(40): 34363-34369.
[157] TAN Z, CHU Y, CHEN J, et al. Lead-Free Perovskite Variant Solid Solutions Cs2Sn1-xTexCl6: Bright Luminescence and High Anti-Water Stability [J]. Advanced Materials, 2020, 32(32): 2002443.
[158] LIN R, GUO Q, ZHU Q, et al. All-Inorganic CsCu2I3 Single Crystal with High-PLQY (≈15.7%) Intrinsic White-Light Emission via Strongly Localized 1D Excitonic Recombination [J]. Advanced Materials, 2019, 31(46): 1905079.
[159] GONG Q, HU Z, DEIBERT B J, et al. Solution Processable MOF Yellow Phosphor with Exceptionally High Quantum Efficiency [J]. Journal of the American Chemical Society, 2014, 136(48): 16724-16727.
[160] CHU S, ZHANG C, XU H, et al. Pinning Effect Enhanced Structural Stability toward a Zero-Strain Layered Cathode for Sodium-Ion Batteries [J]. Angewandte Chemie International Edition, 2021, 60(24): 13366-13371.
[161] YE H Y, LI S H, ZHANG Y, et al. Solid state molecular dynamic investigation of an inclusion ferroelectric: [(2,6-diisopropylanilinium)([(
[18]-crown-6)]BF4 [J]. Journal of the American Chemical Society, 2014, 136(28): 10033-10040.
[162] MA Y Y, SUN Y M, XU W J, et al. Ultrastable 0D Organic Zinc Halides with Highly Efficient Blue Light Emissions [J]. Advanced Optical Materials, 2022, 10: 2200386.
[163] OHNISHI A, YAMADA T, YOSHINARI T, et al. Emission Spectra and Decay Characteristics in Photo-Stimulated (CnH2n+1NH3)2CdCl4 : n=1, 2, 3 [J]. Journal of Electron Spectroscopy and Related Phenomena, 1996, 79: 163-166.
[164] KITAURA M, NAKAGAWA H, FUKUI K, et al. Decay Time Studies on UV-Luminescence in CdBr2-CdCl2 Mixed Crystals [J]. Journal of Electron Spectroscopy and Related Phenomena, 1996, 79: 175-178.
[165] ROCCANOVA R, MING W, WHITESIDE V R, et al. Synthesis, Crystal and Electronic Structures, and Optical Properties of (CH3NH3)2CdX4 (X = Cl, Br, I) [J]. Inorganic Chemistry, 2017, 56(22): 13878-13888.
[166] YANGUI A, PILLET S, BENDEIF E-E, et al. Broadband Emission in a New Two-Dimensional Cd-Based Hybrid Perovskite [J]. ACS Photonics, 2018, 5(4): 1599-1611.
[167] XU H, ZHANG Z, DONG X, et al. Corrugated 1D Hybrid Metal Halide [C6H7ClN]CdCl3 Exhibiting Broadband White-Light Emission [J]. Inorganic Chemistry, 2022, 61(11): 4752-4759.
[168] YANG X, YAN D. Strongly Enhanced Long-Lived Persistent Room Temperature Phosphorescence Based on the Formation of Metal-Organic Hybrids [J]. Advanced Optical Materials, 2016, 4(6): 897-905.
[169] YANGUI A, ROCCANOVA R, MCWHORTER T M, et al. Hybrid Organic-Inorganic Halides (C5H7N2)2MBr4 (M = Hg, Zn) with High Color Rendering Index and High-Efficiency White-Light Emission [J]. Chemistry of Materials, 2019, 31(8): 2983-2991.
[170] MCCALL K M, MORAD V, BENIN B M, et al. Efficient Lone-Pair-Driven Luminescence: Structure-Property Relationships in Emissive 5s(2) Metal Halides [J]. ACS Mater Lett, 2020, 2(9): 1218-1232.
[171] MORAD V, YAKUNIN S, BENIN B M, et al. Hybrid 0D Antimony Halides as Air-Stable Luminophores for High-Spatial-Resolution Remote Thermography [J]. Adv Mater, 2021: e2007355.
[172] MSALMI R, DAMMAK K, ELLEUCH S, et al. Optoelectronic, Luminescence, and Nonlinear Properties of a Non-Centrosymmetric Cd(II)-Based Complex [J]. Journal of Physics and Chemistry of Solids, 2022, 163: 110567.
[173] HE Q, ZHOU C, XU L, et al. Highly Stable Organic Antimony Halide Crystals for X-Ray Scintillation [J]. ACS Materials Letters, 2020, 2(6): 633-638.
[174] PENG H, TIAN Y, WANG X, et al. Bulk Assembly of a 0D Organic Antimony Chloride Hybrid with Highly Efficient Orange Dual Emission by Self-Trapped States [J]. Journal of Materials Chemistry C, 2021, 9(36): 12184-12190.
修改评论