中文版 | English
题名

泄漏模式频散曲线的正反演及其在地下结构成像中的应用

其他题名
FORWARD MODELING AND INVERSION OF LEAKY-MODE DISPERSION CURVES AND THE APPLICATION IN SUBSURFACE IMAGING
姓名
姓名拼音
SHI Caiwang
学号
11849509
学位类型
博士
学位专业
080102 固体力学
学科门类/专业学位类别
08 工学
导师
陈晓非
导师单位
地球与空间科学系
论文答辩日期
2022-10-27
论文提交日期
2022-12-31
学位授予单位
哈尔滨工业大学
学位授予地点
哈尔滨
摘要

频散是波沿非均匀模型传播时的固有现象,并且波的频散特征与模型结构有关。频散特征通常由频散曲线来描述,频散曲线在浅地表勘探、地震学、声学无损检测和光学等领域应用广泛。在浅地表勘探和地震学中,当地下结构接近层状时,从地震记录或背景噪声中提取出的面波频散曲线是反演横波速度结构的有效手段。地震和背景噪声数据中,除面波外,泄漏波也表现出频散特征。在模式理论中,面波可以用简正模式的叠加来表示;相应地,泄漏波可以用泄漏模式的叠加来表示,两种模式的频散都能反映地下结构信息。与面波相比,一部分泄漏波由纵波主导,并且能量泄漏较弱,这部分波称为P导波。利用P导波的频散信息有望约束纵波速度,从而弥补面波频散反演的不足。但现有的频散曲线正反演大多聚焦于简正模式,对泄漏模式的频散特征和数值计算方法缺乏探讨。本文基于谱元法开发了简正和泄漏模式的半解析求解方法并研究了它们的频散特征和敏感性特征,在此基础上实现了P导波和面波频散曲线的联合反演,从而可以同时约束地下的纵、横波速度结构。

简正和泄漏模式对应无源波动方程的非平凡解,数学上可以用特征值问题来描述。传统方法通过构建频散方程进而搜索实数根的方式,可以求解简正模式,即面波频散。然而泄漏模式对应频散方程的复数根,其求解难度大大增加,传统的实数轴搜根法难以获得完备的解集。针对层状半空间模型,本文基于谱元法实现了简正和泄漏模式的高效、高精度正演。与简正模式相比,计算泄漏模式最大的难点在于如何处理波场在半空间中满足的边界条件。本文采用罗宾边界条件和半无限元方法描述半空间中的波场,从而导出了线性特征值问题,之后利用特征值分解就可以稳定有效地计算简正和泄漏模式的半解析解。该方法的主要优势是其在求解过程中无需任何先验信息,且运算效率高,因而对反演非常友好。本文通过多个数值实验证明了该方法的有效性,体现了其精度高和不漏根的特点。模式分析表明,泄漏模式可以分为两种类型,一部分模式的波场由纵波主导且衰减较弱,称为P导波模式;而其他模式主要受横波影响。多种不同类型的模型实验表明,基于谱元法的模式求解方法应用场景广泛,除了由多个均匀层组成的模型外,它还可以应用于垂向速度渐变模型。

基于频散曲线的反演方法被广泛应用于地下速度结构的估计,然而传统频散反演主要利用简正模式,一般仅能反演横波速度。要恢复纵波速度,应考虑P导波的频散。本文基于上述正演方法导出了泄漏模式的敏感性计算方法,对简正和泄漏模式敏感性的定量分析表明,P导波联合面波频散可以同时约束纵横波速度。此外,本文利用P导波模式对纵波速度的高敏感性实现了模式分离,并基于纵波势函数场的振荡特征实现了P导波的模式阶数判别,这使得我们可以用面波分析方法来研究和反演P导波频散曲线。分离后的P导波频散曲线能够与理论模型的频散谱完美匹配,这为多阶P导波频散曲线的反演奠定了基础。

最后本文提出了基于面波和P导波频散曲线的联合反演方法,能够同时反演模型的纵、横波速度。该联合反演可以与多种局部线性化方法结合,包括阻尼最小二乘反演和最小梯度支持正则化反演。在理论模型实验后,本文利用阻尼最小二乘反演对布置在浅海的海底地震仪观测数据进行了反演,建立了海底浅层速度模型。之后利用最小梯度支持正则化反演处理了2008年美国内华达州的地震数据,优化了该地区的地壳速度结构。基于理论和实测数据的反演结果表明,简正和泄漏模式的联合反演能够同时有效地约束纵、横波速度结构,从而得到比传统面波频散反演更全面、准确的模型。

关键词
语种
中文
培养类别
联合培养
入学年份
2018
学位授予年份
2022-12
参考文献列表

[1] WU G, PAN L, WANG J, et al. Shear velocity inversion using multimodal dispersion curves from ambient seismic noise data of USArray transportable array[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(1): e2019JB018213. [2] AKI K, RICHARDS P G. Quantitative seismology[M]. 2002. University Science Books. [3] ROSENBAUM J H. The Long-Time Response of a Layered Elastic Medium to Explosive Sound[J]. Journal of Geophysical Research, 1960, 65(5):1577-1613. [4] BOIERO D, WIARDA E, VERMEER P. Surface-and guided-wave inversion for near-surface modeling in land and shallow marine seismic data[J]. The Leading Edge, 2013, 32(6): 638-646. [5] LI Z, SHI C, CHEN X. Constraints on crustal P wave structure with leaking mode dispersion curves[J]. Geophysical Research Letters, 2021, 48(20): e2020GL091782. [6] LI Z, SHI C, REN H, et al. Multiple leaking mode dispersion observations and applications from ambient noise cross‐correlation in Oklahoma[J]. Geophysical Research Letters, 2022, 49(1): e2021GL096032. [7] THOMSON W T. Transmission of elastic waves through a stratified solid medium[J]. Journal of applied Physics, 1950, 21(2): 89-93. [8] HASKELL N A. The dispersion of surface waves on multilayered media[J]. Bulletin of the seismological Society of America, 1953, 43(1): 17-34. [9] EWING W M, JARDETZKY W S, PRESS F, et al. Elastic waves in layered media[J]. Physics Today, 1957, 10(12): 27. [10] DUNKIN J W. Computation of modal solutions in layered, elastic media at high frequencies[J]. Bulletin of the Seismological Society of America, 1965, 55(2): 335-358. [11] WATSON T H. A note on fast computation of Rayleigh wave dispersion in the multilayered elastic half-space[J]. Bulletin of the Seismological Society of America, 1970, 60(1): 161-166. [12] KNOPOFF L. A matrix method for elastic wave problems[J]. Bulletin of the Seismological Society of America, 1964, 54(1): 431-438. [13] SCHWAB F, KNOPOFF L. Surface waves on multilayered anelastic media[J].Bulletin of the Seismological Society of America, 1971, 61(4): 893-912. [14] KENNETT B L N. Reflections, rays, and reverberations[J]. Bulletin of the Seismological Society of America, 1974, 64(6): 1685-1696. [15] KENNETT B L N, KERRY N J. Seismic waves in a stratified half space[J]. Geophysical Journal International, 1979, 57(3): 557-583. [16] CHEN X. A systematic and efficient method of computing normal modes for multilayered half-space[J]. Geophysical Journal International, 1993, 115(2): 391-409. [17] LUCO J E, APSEL R J. On the Green's functions for a layered half-space. Part I[J]. Bulletin of the Seismological Society of America, 1983, 73(4): 909-929. [18] 何耀锋,陈蔚天,陈晓非.利用广义反射-透射系数方法求解含低速层水平层状 介质模型中面波频散曲线问题[J].地球物理学报,2006, 49(04):1074-1081. [19] WU B, CHEN X. Stable, accurate and efficient computation of normal modes for horizontal stratified models[J]. Geophysical Journal International, 2016, 206(2): 1281-1300. [20] WU B, CHEN X. A Versatile Solver of the Normal Modes for Horizontal Stratified Complicated Models[J]. Seismological Research Letters, 2022, 93(3): 1852-1867. [21] FAN Y H, CHEN X F, LIU X F, et al. Approximate decomposition of the dispersion equation at high frequencies and the number of multimodes for Rayleigh waves[J]. Chinese Journal of Geophysics, 2007, 50(1): 222-230. [22] TAKEUCHI H, SAITO M. Seismic surface waves[J]. Methods in computational physics, 1972, 11: 217-295. [23] LYSMER J. Lumped mass method for Rayleigh waves[J]. Bulletin of the Seismological Society of America, 1970, 60(1): 89-104. [24] KAUSEL E. Waves propagation modes: From simple systems to layered soils[M]. Surface Waves in Geomechanics: Direct and Inverse Modelling for Soils and Rocks. Springer, Vienna, 2005: 165-202. [25] DENOLLE M A, DUNHAM E M, BEROZA G C. Solving the surface‐wave eigenproblem with Chebyshev spectral collocation[J]. Bulletin of the Seismological Society of America, 2012, 102(3): 1214-1223. [26] HAWKINS R. A spectral element method for surface wave dispersion and adjoints[J]. Geophysical Journal International, 2018, 215(1): 267-302. [27] HANEY M M, TSAI V C. Perturbational and nonperturbational inversion of Rayleigh-wave velocitiesInversion of Rayleigh-wave velocities[J]. Geophysics,2017, 82(3): F15-F28. [28] HANEY M M, TSAI V C. Perturbational and nonperturbational inversion of Love-wave velocities[J]. Geophysics, 2020, 85(1): F19-F26. [29] VALENCIANO J, CHAPLAIN M A J. A Laguerre-Legendre spectral-element method for the solution of partial differential equations on infinite domains: application to the diffusion of tumour angiogenesis factors[J]. Mathematical and computer modelling, 2005, 41(10): 1171-1192. [30] VAZIRI ASTANEH A, GUDDATI M N. Improved inversion algorithms for near-surface characterization[J]. Geophysical Journal International, 2016, 206(2): 1410-1423. [31] 夏唐代 , 吴世明 . 流 体 — 固体介 质 中 瑞 利 波 特 性 [J]. 水 利 学 报 , 1994(1):69-75. [32] 夏唐代, 张忠苗, 吴世明. 土中 Love 波弥散特性[J]. 地球物理学报, 1998, 41(5): 697-703. [33] HERRMANN R B. Computer programs in seismology: An evolving tool for instruction and research[J]. Seismological Research Letters, 2013, 84(6): 1081-1088. [34] WATHELET M, JONGMANS D, OHRNBERGER M. Surface‐wave inversion using a direct search algorithm and its application to ambient vibration measurements[J]. Near surface geophysics, 2004, 2(4): 211-221. [35] GABRIELS P, SNIEDER R, NOLET G. In situ measurements of shear‐wave velocity in sediments with higher‐mode Rayleigh waves[J]. Geophysical prospecting, 1987, 35(2): 187-196. [36] XIA J, MILLER R D, PARK C B. Estimation of near-surface shear-wave velocity by inversion of Rayleigh waves[J]. Geophysics, 1999, 64(3): 1390-1395. [37] LUO Y, XIA J, LIU J, et al. Joint inversion of high-frequency surface waves with fundamental and higher modes[J]. Journal of Applied Geophysics, 2007, 62(4): 375-384. [38] YIN X, XU H, MI B, et al. Joint inversion of Rayleigh and Love wave dispersion curves for improving the accuracy of near-surface S-wave velocities[J]. Journal of Applied Geophysics, 2020, 176: 103939. [39] ZHANG K, LI H, WANG X, et al. Retrieval of shallow S-wave profiles from seismic reflection surveying and traffic-induced noiseSeismic survey and traffic noise imaging[J]. Geophysics, 2020, 85(6): EN105-EN117.[40] PAN L, CHEN X, WANG J, et al. Sensitivity analysis of dispersion curves of Rayleigh waves with fundamental and higher modes[J]. Geophysical Journal International, 2019, 216(2): 1276-1303. [41] BEATY K S, SCHMITT D R, SACCHI M. Simulated annealing inversion of multimode Rayleigh wave dispersion curves for geological structure[J]. Geophysical Journal International, 2002, 151(2): 622-631. [42] MORO G D, PIPAN M, GABRIELLI P. Rayleigh wave dispersion curve inversion via genetic algorithms and Marginal Posterior Probability Density estimation[J]. Journal of Applied Geophysics, 2007, 61(1):39-55. [43] SONG X, TANG L, LV X, et al. Application of particle swarm optimization to interpret Rayleigh wave dispersion curves[J]. Journal of Applied Geophysics, 2012: 1-13. [44] JIANQI L, SHANYOU L, WEI L, et al. A hybrid inversion method of damped least squares with simulated annealing used for Rayleigh wave dispersion curve inversion[J]. 地震工程和工程振动(英文版), 2014, 0(1):13-21. [45] FU L, PAN L, MA Q, et al. Retrieving S-wave velocity from surface wave multimode dispersion curves with DispINet[J]. Journal of Applied Geophysics, 2021, 193: 104430. [46] CHEN X, XIA J, PANG J, et al. Deep learning inversion of Rayleigh-wave dispersion curves with geological constraints for near-surface investigations[J]. Geophysical Journal International, 2022, 231(1): 1-14. [47] ZHANG Z D , SCHUSTER G , LIU Y , et al. Wave equation dispersion inversion using a difference approximation to the dispersion-curve misfit gradient[J]. Journal of Applied Geophysics, 2016, 133:9-15. [48] LI J, FENG Z, SCHUSTER G T, et al. Wave-equation dispersion inversion[J]. Geophysical Journal International, 2017, 208(3): 1567-1578. [49] LI J, LIN F C, ALLAM A, et al. Wave equation dispersion inversion of surface waves recorded on irregular topography[J]. Geophysical Journal International, 2019, 217(1): 346-360. [50] LI J, LIN F C, ALLAM A, et al. Wave equation dispersion inversion of surface waves recorded on irregular topography[J]. Geophysical Journal International, 2019, 217(1): 346-360. [51] LIU Z, LI J, HANAFY S M, et al. 3D Wave-equation Dispersion Inversion of Rayleigh Waves[J]. Geophysics, 2019, 84(5):1-127. [52] LIU Z, LI J, HANAFY S M, et al. 3D wave-equation dispersion inversion of surface waves recorded on irregular topography[J]. Geophysics, 2020, 85(3): R147-R161. [53] WITTKAMP F, ATHANASOPOULOS N, BOHLEN T. Individual and joint 2-D elastic full-waveform inversion of Rayleigh and Love waves[J]. Geophysical Journal International, 2019, 216(1): 350-364. [54] PÉREZ SOLANO C A, DONNO D, CHAURIS H. Alternative waveform inversion for surface wave analysis in 2-D media[J]. Geophysical Journal International, 2014, 198(3): 1359-1372. [55] ZHANG Z, ALAJAMI M, ALKHALIFAH T. Wave-equation dispersion spectrum inversion for near-surface characterization using fibre-optics acquisition[J]. Geophysical Journal International, 2020, 222(2): 907-918. [56] SOMVILLE O. A propos d’une onde longue dans la premiére phase de quelques séismogrammes[J]. Gerl. Beitr. Geophysik, 1930, 27: 437-442. [57] OLIVER J, MAJOR M. Leaking modes and the PL phase[J]. Bulletin of the Seismological Society of America, 1960, 50(2): 165-180. [58] PHINNEY R A. Leaking modes in the crustal waveguide: 1. The oceanic PL wave[J]. Journal of Geophysical Research, 1961, 66(5): 1445-1469. [59] COCHRAN M D, WOEBER A F, DE BREMAECKER J C. Body waves as normal and leaking modes, 3. Pseudo modes and partial derivatives on the (+ −) sheet[J]. Reviews of Geophysics, 1970, 8(2): 321-357. [60] WU B, CHEN X. Accurate computation of leaky modes for anomalous layered models[J]. Annals of Geophysics, 2017, 60(6): S0663-S0663. [61] GILBERT F. Propagation of transient leaking modes in a stratified elastic waveguide[J]. Reviews of Geophysics, 1964, 2(1): 123-153. [62] RADOVICH B J, DE BREMAECKER J C. Body waves as normal and leaking modes—leaking modes of Love waves[J]. Bulletin of the Seismological Society of America, 1974, 64(2): 301-306. [63] DELVES L M, LYNESS J N. A numerical method for locating the zeros of an analytic function[J]. Mathematics of computation, 1967, 21(100): 543-560. [64] SMITH R E, HOUDE-WALTER S N, FORBES G W. Mode determination for planar waveguide using the four-sheeted dispersion relation[J]. IEEE journal of quantum electronics, 1992, 28(6): 1520-1526. [65] LAI C G, RIX G J. Solution of the Rayleigh eigenproblem in viscoelastic media[J]. Bulletin of the Seismological Society of America, 2002, 92(6): 2297-2309.[66] 伍敦仕, 孙成禹, 林美言, 等. 黏弹介质中勒夫波频散问题的统一解及其动 态特征分析[J]. 地球物理学报, 2017, 60(2): 688-703. [67] BRAZIER-SMITH P R, SCOTT J F M. On the determination of the roots of dispersion equations by use of winding number integrals[J]. Journal of Sound Vibration, 1991, 145(3): 503-510. [68] IVANSSON S, KARASALO I. Computation of modal wavenumbers using an adaptive winding-number integral method with error control[J]. Journal of Sound and Vibration, 1993, 161(1): 173-180. [69] KIEFER D A, PONSCHAB M, RUPITSCH S J, et al. Calculating the full leaky Lamb wave spectrum with exact fluid interaction[J]. The Journal of the Acoustical Society of America, 2019, 145(6): 3341-3350. [70] MICHALSKI K A, MUSTAFA M M. Numerically stable and reliable computation of electromagnetic modes in multilayered waveguides using the Cauchy integration method with automatic differentiation[J]. IEEE Transactions on Microwave Theory and Techniques, 2018, 66(9): 3981-3992. [71] CHEN C, BERINI P, FENG D, et al. Efficient and accurate numerical analysis of multilayer planar optical waveguides in lossy anisotropic media[J]. Optics Express, 2000, 7(8): 260-272. [72] SEMWAL G, RASTOGI V. Derivative free method for computing modes of multilayer planar waveguide[J]. Optical and Quantum Electronics, 2014, 46(3): 423-438. [73] GLYTSIS E N, ANEMOGIANNIS E. Simple derivative-free method of zero extraction by phase-based enclosure for determination of complex propagation constants in planar multilayer waveguides[J]. Applied Optics, 2018, 57(36): 10485-10494. [74] MAZZOTTI M, BARTOLI I, MARZANI A, et al. A coupled SAFE-2.5 D BEM approach for the dispersion analysis of damped leaky guided waves in embedded waveguides of arbitrary cross-section[J]. Ultrasonics, 2013, 53(7): 1227-1241. [75] URANUS H P, HOEKSTRA H, VAN GROESEN E. Simple high-order Galerkin finite element scheme for the investigation of both guided and leaky modes in anisotropic planar waveguides[J]. Optical and quantum electronics, 2004, 36(1): 239-257. [76] HAYASHI T, INOUE D. Calculation of leaky Lamb waves with a semi-analytical finite element method[J]. Ultrasonics, 2014, 54(6): 1460-1469. [77] HUANG C C. Numerical calculations of ARROW structures by pseudospectral approach with Mur’s absorbing boundary conditions[J]. Optics express, 2006, 14(24): 11631-11652. [78] HUANG W P, XU C L, LUI W, et al. The perfectly matched layer boundary condition for modal analysis of optical waveguides: leaky mode calculations[J]. IEEE Photonics Technology Letters, 1996, 8(5): 652-654. [79] TREYSSEDE F, NGUYEN K L, BONNET-BENDHIA A S, et al. Finite element computation of trapped and leaky elastic waves in open stratified waveguides[J]. Wave Motion, 2014, 51(7): 1093-1107. [80] TREYSSEDE F. Spectral element computation of high-frequency leaky modes in three-dimensional solid waveguides[J]. Journal of Computational Physics, 2016, 314: 341-354. [81] ZHU J, ZHANG X, SONG R. A unified mode solver for optical waveguides based on mapped barycentric rational chebyshev differentiation matrix[J]. Journal of lightwave technology, 2010, 28(12): 1802-1810. [82] GUBBINS D, SNIEDER R. Dispersion of P waves in subducted lithosphere: Evidence for an eclogite layer[J]. Journal of Geophysical Research: Solid Earth, 1991, 96(B4): 6321-6333. [83] ROBERTSSON J O A, HOLLIGER K, GREEN A G, et al. Effects of near‐ surface waveguides on shallow high‐resolution seismic refraction and reflection data[J]. Geophysical Research Letters, 1996, 23(5): 495-498. [84] BONNEL J, THODE A, WRIGHT D, et al. Nonlinear time-warping made simple: A step-by-step tutorial on underwater acoustic modal separation with a single hydrophone[J]. The journal of the acoustical society of America, 2020, 147(3): 1897-1926. [85] BONNEL J, DOSSO S E, ROSS CHAPMAN N. Bayesian geoacoustic inversion of single hydrophone light bulb data using warping dispersion analysis[J]. The Journal of the Acoustical Society of America, 2013, 134(1): 120-130. [86] PARK C B, MILLER R D, XIA J. Multichannel analysis of surface waves[J]. Geophysics, 1999, 64(3): 800-808. [87] SHTIVELMAN V. Estimating seismic velocities below the sea‐bed using surface waves[J]. Near Surface Geophysics, 2004, 2(4): 241-247. [88] FORBRIGER T. Inversion of shallow-seismic wavefields: I. Wavefield transformation[J]. Geophysical Journal International, 2003, 153(3): 719-734. [89] WANG J, WU G, CHEN X. Frequency‐Bessel transform method for effective imaging of higher‐mode Rayleigh dispersion curves from ambient seismic noise data[J]. Journal of Geophysical Research: Solid Earth, 2019, 124(4): 3708-3723. [90] LI Z, CHEN X. An effective method to extract overtones of surface wave from array seismic records of earthquake events[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(3): e2019JB018511. [91] ZHOU J, CHEN X. Removal of crossed artifacts from multimodal dispersion curves with modified frequency – Bessel method[J]. Bulletin of the Seismological Society of America, 2022, 112(1): 143-152. [92] SUN C, WANG Z, WU D, et al. A unified description of surface waves and guided waves with relative amplitude dispersion maps[J]. Geophysical Journal International, 2021, 227(3): 1480-1495. [93] LI Z, ZHOU J, WU G, et al. CC-FJpy: A Python package for extracting overtone surface-wave dispersion from seismic ambient‐noise cross correlation[J]. Seismological Research Letters, 2021, 92(5): 3179-3186. [94] ROTH M, HOLLIGER K. Inversion of source-generated noise in high-resolution seismic data[J]. The Leading Edge, 1999, 18(12): 1402-1406. [95] KLEIN G, BOHLEN T, THEILEN F, et al. Acquisition and inversion of dispersive seismic waves in shallow marine environments[J]. Marine Geophysical Researches, 2005, 26(2): 287-315. [96] FORBRIGER T. Inversion of shallow-seismic wavefields: II. Inferring subsurface properties from wavefield transforms[J]. Geophysical Journal International, 2003, 153(3): 735-752. [97] MARASCHINI M, ERNST F, FOTI S, et al. A new misfit function for multimodal inversion of surface waves[J]. Geophysics, 2010, 75(4): G31-G43. [98] MARASCHINI M, FOTI S. A Monte Carlo multimodal inversion of surface waves[J]. Geophysical Journal International, 2010, 182(3): 1557-1566. [99] LI J, HANAFY S, SCHUSTER G. Wave‐Equation Dispersion Inversion of Guided P Waves in a Waveguide of Arbitrary Geometry[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(9): 7760-7774. [100] LIN S, ASHLOCK J C. Comparison of MASW and MSOR for Surface Wave Testing of Pavements[J]. Journal of Environmental and Engineering Geophysics, 2015, 20(4): 277-285. [101] RYDEN N, LOWE M J S. Guided wave propagation in three-layer pavement structures[J]. The Journal of the Acoustical Society of America, 2004, 116(5): 2902-2913. [102] 杨天春, 何继善, 鲁光银, 等. 道路结构型地层瑞利波相速度频散曲线的完整求取[J]. 中南大学学报: 自然科学版, 2013, 44(2): 642-648. [103] RYDEN N, PARK C B, ULRIKSEN P, et al. Multimodal approach to seismic pavement testing[J]. Journal of geotechnical and geoenvironmental engineering, 2004, 130(6): 636-645. [104] RYDEN N, PARK C B. Fast simulated annealing inversion of surface waves on pavement using phase-velocity spectra[J]. Geophysics, 2006, 71(4): R49-R58. [105] SERIANI G, PRIOLO E, CARCIONE J, et al. High-order spectral element method for elastic wave modeling[M]. Seg technical program expanded abstracts 1992. Society of Exploration Geophysicists, 1992: 1285-1288. [106] PRIOLO E, CARCIONE J M, SERIANI G. Numerical simulation of interface waves by high‐order spectral modeling techniques[J]. The Journal of the Acoustical Society of America, 1994, 95(2): 681-693. [107] IGEL H. Computational seismology: a practical introduction[M]. Oxford University Press, 2017. [108] FUNARO D. Fortran routines for spectral methods. Mdena: Instituto di Analisi Numerica, 1993. [109] 张凯, 张保卫, 刘建勋, 等. 层状黏弹性介质中 Rayleigh 波频散曲线 “交 叉” 现象分析[J]. 地球物理学报, 2016, 59(3): 972-980. [110] HADDON R A W. Computation of synthetic seismograms in layered earth models using leaking modes[J]. Bulletin of the Seismological Society of America, 1984, 74(4): 1225-1248. [111] WATSON T H. A real frequency, complex wave-number analysis of leaking modes[J]. Bulletin of the Seismological Society of America, 1972, 62(1): 369-384. [112] JULIAN B R, ANDERSON D L. Travel times, apparent velocities and amplitudes of body waves[J]. Bulletin of the Seismological Society of America, 1968, 58(1): 339-366. [113] ALSOP L E, GOODMAN A S, GREGERSEN S. Reflection and transmission of inhomogeneous waves with particular application to Rayleigh waves[J]. Bulletin of the Seismological Society of America, 1974, 64(6): 1635-1652. [114] SIMMONS J A, DRESCHER‐KRASICKA E, WADLEY H N G. Leaky axisymmetric modes in infinite clad rods. I[J]. The Journal of the Acoustical Society of America, 1992, 92(2): 1061-1090. [115] KOMATITSCH D, BARNES C, TROMP J. Wave propagation near a fluid-solid interface: A spectral-element approach[J]. Geophysics, 2000, 65(2): 623-631.[116] XI C, XIA J, MI B, et al. Modified frequency–Bessel transform method for dispersion imaging of Rayleigh waves from ambient seismic noise[J]. Geophysical Journal International, 2021, 225(2): 1271-1280. [117] KOBAYASHI N. A new method to calculate normal modes[J]. Geophysical Journal International, 2007, 168(1): 315-331. [118] XIA J, MILLER R D, PARK C B, et al. Inversion of high frequency surface waves with fundamental and higher modes[J]. Journal of Applied Geophysics, 2003, 52(1): 45-57. [119] FU L, PAN L, LI Z, et al. Improved High‐Resolution 3D Vs Model of Long Beach, CA: Inversion of Multimodal Dispersion Curves From Ambient Noise of a Dense Array[J]. Geophysical Research Letters, 2022, 49(4): e2021GL097619. [120] DORMAN J, EWING M. Numerical inversion of seismic surface wave dispersion data and crust‐mantle structure in the New York‐Pennsylvania area[J]. Journal of Geophysical Research, 1962, 67(13): 5227-5241. [121] MA Q, PAN L, WANG JN Y Z, et al. Crustal S-Wave Velocity Structure Beneath the Northwestern Bohemian Massif, Central Europe, Revealed by the Inversion of Multimodal Ambient Noise Dispersion Curves. Front[J]. Earth Sci, 2022, 10: 838751. [122] WANG Y, LI Z, YOU Q, et al. Shear-wave velocity structure of the shallow sediments in the Bohai Sea from an ocean-bottom-seismometer survey[J]. Geophysics, 2016, 81(3): ID25-ID36. [123] BOHLEN T, KUGLER S, KLEIN G, et al. 1.5 D inversion of lateral variation of Scholte-wave dispersion[J]. Geophysics, 2004, 69(2): 330-344. [124] GUILLEMOTEAU J, VIGNOLI G, BARRETO J, et al. Sparse laterally constrained inversion of surface-wave dispersion curves via minimum gradient support regularization[J]. Geophysics, 2022, 87(3): R281-R289. [125] KUGLER S, BOHLEN T, FORBRIGER T, et al. Scholte-wave tomography for shallow-water marine sediments[J]. Geophysical Journal International, 2007, 168(2): 551-570. [126] DU S, CAO J, ZHOU S, et al. Observation and inversion of very-low-frequency seismo-acoustic fields in the South China Sea[J]. The Journal of the Acoustical Society of America, 2020, 148(6): 3992-4001. [127] DONG H, NGUYEN T D, DUFFAUT K. Estimation of seabed shear-wave velocity profiles using shear-wave source data[J]. The Journal of the Acoustical Society of America, 2013, 134(1): 176-184.[128] WANG Y, LI Z, GENG J, et al. Seismic imaging of S-wave structures of shallow sediments in the East China Sea using OBN multicomponent Scholte-wave data[J]. Geophysics, 2020, 85(6): EN87-EN104. [129] WANG Y, YOU Q, HAO T. Estimating the Shear-Wave Velocities of Shallow Sediments in the Yellow Sea Using Ocean-Bottom-Seismometer Multicomponent Scholte-Wave Data[J]. Frontiers in Earth Science, 2022, 10: 812744. [130] YAN Y, CHEN X, HUAI N, et al. Modern inversion workflow of the multimodal surface wave dispersion curves: staging strategy and Pattern search with embedded Kuhn–Munkres algorithm[J]. Geophysical Journal International, 2022, 231(1): 47-71. [131] ERNST F. Modal elastic inversion[C]. 75th EAGE Conference & Exhibition incorporating SPE EUROPEC 2013. European Association of Geoscientists & Engineers, 2013: cp-348-00001. [132] SHEN W, RITZWOLLER M H. Crustal and uppermost mantle structure beneath the United States[J]. Journal of Geophysical Research: Solid Earth, 2016, 121(6): 4306-4342. [133] 李正波. 频率贝塞尔变换法提取地震记录中的频散信息[D]. 中国科学技术 大学, 2020. [134] BROCHER T M. Empirical relations between elastic wavespeeds and density in the Earth's crust[J]. Bulletin of the seismological Society of America, 2005, 95(6): 2081-2092. [135] CALKINS J A, ABERS G A, EKSTRÖM G, et al. Shallow structure of the Cascadia subduction zone beneath western Washington from spectral ambient noise correlation[J]. Journal of Geophysical Research: Solid Earth, 2011, 116(B7). [136] ÖZALAYBEY S, SAVAGE M K, SHEEHAN A F, et al. Shear-wave velocity structure in the northern Basin and Range province from the combined analysis of receiver functions and surface waves[J]. Bulletin of the Seismological Society of America, 1997, 87(1): 183-199. [137] 吴高雄. 基于频率-贝塞尔变换方法从背景噪声中提取高阶面波频散曲线 并反演美国大陆三维横波速度结构[D]. 中国科学技术大学, 2020. [138] VAN DER KRUK J, STEELMAN C M, ENDRES A L, et al. Dispersion inversion of electromagnetic pulse propagation within freezing and thawing soil waveguides[J]. Geophysical Research Letters, 2009, 36(18).

所在学位评定分委会
力学与航空航天工程系
国内图书分类号
P631.4
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/417129
专题理学院_地球与空间科学系
推荐引用方式
GB/T 7714
史才旺. 泄漏模式频散曲线的正反演及其在地下结构成像中的应用[D]. 哈尔滨. 哈尔滨工业大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11849509-史才旺-地球与空间科学(18473KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[史才旺]的文章
百度学术
百度学术中相似的文章
[史才旺]的文章
必应学术
必应学术中相似的文章
[史才旺]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。