中文版 | English
题名

Random forest: An optimal chlorophyll-a algorithm for optically complex inland water suffering atmospheric correction uncertainties

作者
通讯作者Luo, Juhua; Duan, Hongtao
发表日期
2022-12-01
DOI
发表期刊
ISSN
0022-1694
EISSN
1879-2707
卷号615
摘要
A robust and reliable chlorophyll-a (Chla) concentration algorithm is still lacking for optically complex waters due to the lack of understanding of the bio-optical process. Machine learning approaches, which excel at detecting potential complex nonlinear relationships, provide opportunities to estimate Chla accurately for optically complex waters. However, the uncertainties in atmospheric correction (AC) may be amplified in different Chla algorithms. Here, we aim to select one state-of-the-art algorithm or establish a new algorithm based on machine learning approaches that less sensitive to AC uncertainties. Firstly, nine state-of-the-art empirical, semianalytical, and optical water types (OWT) classification-based Chla algorithms were imple-mented. These existing algorithms showed good performance by using in situ database, however, failed in actual OLCI applications due to their sensitivity to AC uncertainties. Thus, four popular machine learning approaches (random forest regression (RFR), extreme gradient boosting (XGBoost), deep neural network (DNN), and support vector regression (SVR)) were then employed. Among them, the "RFR-Chla" model performed the best and showed less sensitivity to AC uncertainties. Finally, the Chla spatiotemporal variations in 163 major lakes across eastern China were mapped from OLCI between May 2016 and April 2020 using the proposed RFR-Chla model. Generally, the lakes in eastern China are severely eutrophic, with an average Chla concentration of 33.39 +/- 6.95 mu g/L. Spatially, Chla in the south of eastern China was significantly higher than those in northern lakes. Seasonally, Chla was high in the summer and autumn and low in the spring and winter. This study provides a reference for water quality monitoring in turbid inland waters suffering certain AC uncertainties and supports aquatic management and SDG 6 reporting.
关键词
相关链接[来源记录]
收录类别
语种
英语
学校署名
其他
资助项目
National Natural Science Foundation of China["42201403","U2243205","42271377","41971309","41901299"] ; Natural Science Foundation of Jiangsu Province[BK20221159]
WOS研究方向
Engineering ; Geology ; Water Resources
WOS类目
Engineering, Civil ; Geosciences, Multidisciplinary ; Water Resources
WOS记录号
WOS:000895770900002
出版者
ESI学科分类
ENGINEERING
来源库
Web of Science
引用统计
被引频次[WOS]:34
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/417327
专题工学院_环境科学与工程学院
作者单位
1.Chinese Acad Sci, Nanjing Inst Geog & Limnol, Key Lab Watershed Geog Sci, 73 East Beijing Rd, Nanjing 210008, Peoples R China
2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
3.Chinese Acad Sci, Northeast Inst Geog & Agroecol, Changchun 130102, Peoples R China
4.Southern Univ Sci & Technol, Sch Environm Sci & Engn, Shenzhen 518055, Guangdong, Peoples R China
推荐引用方式
GB/T 7714
Shen, Ming,Luo, Juhua,Cao, Zhigang,et al. Random forest: An optimal chlorophyll-a algorithm for optically complex inland water suffering atmospheric correction uncertainties[J]. JOURNAL OF HYDROLOGY,2022,615.
APA
Shen, Ming.,Luo, Juhua.,Cao, Zhigang.,Xue, Kun.,Qi, Tianci.,...&Duan, Hongtao.(2022).Random forest: An optimal chlorophyll-a algorithm for optically complex inland water suffering atmospheric correction uncertainties.JOURNAL OF HYDROLOGY,615.
MLA
Shen, Ming,et al."Random forest: An optimal chlorophyll-a algorithm for optically complex inland water suffering atmospheric correction uncertainties".JOURNAL OF HYDROLOGY 615(2022).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Shen, Ming]的文章
[Luo, Juhua]的文章
[Cao, Zhigang]的文章
百度学术
百度学术中相似的文章
[Shen, Ming]的文章
[Luo, Juhua]的文章
[Cao, Zhigang]的文章
必应学术
必应学术中相似的文章
[Shen, Ming]的文章
[Luo, Juhua]的文章
[Cao, Zhigang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。