中文版 | English
题名

Factoring 3D Convolutions for Medical Images by Depth-wise Dependencies-induced Adaptive Attention

作者
DOI
发表日期
2022
ISBN
978-1-6654-6820-6
会议录名称
页码
883-886
会议日期
6-8 Dec. 2022
会议地点
Las Vegas, NV, USA
摘要
It turns out that convolutional neural networks (CNNs) have excellent medical image processing capabilities. Hence, effectively and efficiently deploying CNNs on devices with varying computing power to make computer-aided diagnosis puts on the agenda. However, it is a dilemma to balance the limited computing resources and model complexity. Previously, we proposed factorized convolution with spectral normalization (FConvSN) to mitigate the bottleneck of deploying CNNs for 2D medical images. But due to the cube structure of 3D convolutional kernels, it does not work well for 3D medical images. Directly flattening 3D kernels to 2D weights for matrix factorization may undermine the learning ability along depth-wise, resulting in the loss of depth information and the decline of model performance. To this end, we factorize a 3D convolutional kernel to 2D weight matrices with depth-wise dimensions, then assign an attentive score for each 2D weight matrix by a depth-wise dependencies-induced adaptive attention block (AA). AA with a temperature hyper-parameter helps convolution kernel to better capture depth-wise dependencies in 3D medical images, improving its learning ability along the depth direction. We term this novel factorized convolution as FConvAA used for compressing model complexity without impairing the depth-wise expressivity. We also impose spectral normalization (SN) for FConvAA to constrain spectral norm-wise weights. We conduct extensive experiments on the public lung CT dataset LUNA16 and the private retina OCT dataset to demonstrate the effectiveness and feasibility of our FConvAA.
关键词
学校署名
第一
相关链接[IEEE记录]
来源库
IEEE
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9995195
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/418575
专题工学院_斯发基斯可信自主研究院
工学院_计算机科学与工程系
作者单位
1.Department of Computer Science and Engineering, Research Institute of Trustworthy Autonomous Systems, Southern University of Science and Technology, Shenzhen, China
2.CVTE Research, Guangzhou, China
第一作者单位斯发基斯可信自主系统研究院;  计算机科学与工程系
第一作者的第一单位斯发基斯可信自主系统研究院;  计算机科学与工程系
推荐引用方式
GB/T 7714
Na Zeng,Jiansheng Fang,Xingyue Wang,et al. Factoring 3D Convolutions for Medical Images by Depth-wise Dependencies-induced Adaptive Attention[C],2022:883-886.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Na Zeng]的文章
[Jiansheng Fang]的文章
[Xingyue Wang]的文章
百度学术
百度学术中相似的文章
[Na Zeng]的文章
[Jiansheng Fang]的文章
[Xingyue Wang]的文章
必应学术
必应学术中相似的文章
[Na Zeng]的文章
[Jiansheng Fang]的文章
[Xingyue Wang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。