题名 | Hard Exudate Segmentation Supplemented by Super-Resolution with Multi-scale Attention Fusion Module |
作者 | |
通讯作者 | Yan Hu; Jiang Liu |
DOI | |
发表日期 | 2022
|
会议名称 | 2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
|
ISBN | 978-1-6654-6820-6
|
会议录名称 | |
页码 | 1375-1380
|
会议日期 | 6-8 Dec. 2022
|
会议地点 | Las Vegas, NV, USA
|
摘要 | Hard exudates (HE) is the most specific biomarker for retina edema. Precise HE segmentation is vital for disease diagnosis and treatment, but automatic segmentation is challenged by its large variation of characteristics including size, shape and position, which makes it difficult to detect tiny lesions and lesion boundaries. Considering the complementary features between segmentation and super-resolution tasks, this paper proposes a novel hard exudates segmentation method named SSMAF with an auxiliary super-resolution task, which brings in helpful detailed features for tiny lesion and boundaries detection. Specifically, we propose a fusion module named Multi-scale Attention Fusion (MAF) module for our dual-stream framework to effectively integrate features of the two tasks. MAF first adopts split spatial convolutional (SSC) layer for multi-scale features extraction and then utilize attention mechanism for features fusion of the two tasks. Considering pixel dependency, we introduce region mutual information (RMI) loss to optimize MAF module for tiny lesions and boundary detection. We evaluate our method on two public lesion datasets, IDRiD and E-Ophtha. Our method shows competitive performance with low-resolution inputs, both quantitatively and qualitatively. On E-Ophtha dataset, the method can achieve $\ge 3$% higher dice and recall compared with the state-of-the-art methods. |
关键词 | |
学校署名 | 第一
; 通讯
|
相关链接 | [IEEE记录] |
来源库 | IEEE
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9995545 |
引用统计 |
被引频次[WOS]:0
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/418591 |
专题 | 工学院_计算机科学与工程系 工学院_斯发基斯可信自主研究院 |
作者单位 | 1.Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China 2.Research Institute of Trustworthy Autonomous Systems Southern University of Science and Technology, Shenzhen, Guangdong, China 3.Department of Ophthalmology, Shenzhen People’s Hospital, Guangdong, China |
第一作者单位 | 计算机科学与工程系 |
通讯作者单位 | 计算机科学与工程系; 斯发基斯可信自主系统研究院 |
第一作者的第一单位 | 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Jiayi Zhang,Xiaoshan Chen,Zhongxi Qiu,et al. Hard Exudate Segmentation Supplemented by Super-Resolution with Multi-scale Attention Fusion Module[C],2022:1375-1380.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
2211.09404.pdf(2666KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论