中文版 | English
题名

Hard Exudate Segmentation Supplemented by Super-Resolution with Multi-scale Attention Fusion Module

作者
通讯作者Yan Hu; Jiang Liu
DOI
发表日期
2022
会议名称
2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
ISBN
978-1-6654-6820-6
会议录名称
页码
1375-1380
会议日期
6-8 Dec. 2022
会议地点
Las Vegas, NV, USA
摘要
Hard exudates (HE) is the most specific biomarker for retina edema. Precise HE segmentation is vital for disease diagnosis and treatment, but automatic segmentation is challenged by its large variation of characteristics including size, shape and position, which makes it difficult to detect tiny lesions and lesion boundaries. Considering the complementary features between segmentation and super-resolution tasks, this paper proposes a novel hard exudates segmentation method named SSMAF with an auxiliary super-resolution task, which brings in helpful detailed features for tiny lesion and boundaries detection. Specifically, we propose a fusion module named Multi-scale Attention Fusion (MAF) module for our dual-stream framework to effectively integrate features of the two tasks. MAF first adopts split spatial convolutional (SSC) layer for multi-scale features extraction and then utilize attention mechanism for features fusion of the two tasks. Considering pixel dependency, we introduce region mutual information (RMI) loss to optimize MAF module for tiny lesions and boundary detection. We evaluate our method on two public lesion datasets, IDRiD and E-Ophtha. Our method shows competitive performance with low-resolution inputs, both quantitatively and qualitatively. On E-Ophtha dataset, the method can achieve $\ge 3$% higher dice and recall compared with the state-of-the-art methods.
关键词
学校署名
第一 ; 通讯
相关链接[IEEE记录]
来源库
IEEE
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9995545
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/418591
专题工学院_计算机科学与工程系
工学院_斯发基斯可信自主研究院
作者单位
1.Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
2.Research Institute of Trustworthy Autonomous Systems Southern University of Science and Technology, Shenzhen, Guangdong, China
3.Department of Ophthalmology, Shenzhen People’s Hospital, Guangdong, China
第一作者单位计算机科学与工程系
通讯作者单位计算机科学与工程系;  斯发基斯可信自主系统研究院
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Jiayi Zhang,Xiaoshan Chen,Zhongxi Qiu,et al. Hard Exudate Segmentation Supplemented by Super-Resolution with Multi-scale Attention Fusion Module[C],2022:1375-1380.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
2211.09404.pdf(2666KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Jiayi Zhang]的文章
[Xiaoshan Chen]的文章
[Zhongxi Qiu]的文章
百度学术
百度学术中相似的文章
[Jiayi Zhang]的文章
[Xiaoshan Chen]的文章
[Zhongxi Qiu]的文章
必应学术
必应学术中相似的文章
[Jiayi Zhang]的文章
[Xiaoshan Chen]的文章
[Zhongxi Qiu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。