中文版 | English
题名

Replay-Oriented Gradient Projection Memory for Continual Learning in Medical Scenarios

作者
DOI
发表日期
2022
ISBN
978-1-6654-6820-6
会议录名称
页码
1724-1729
会议日期
6-8 Dec. 2022
会议地点
Las Vegas, NV, USA
摘要
Despite the tremendous progress recently achieved by deep learning (DL) in medical image analysis, most DL models only concentrate on single data distribution, which follows the independent and identically distributed (i.i.d) assumption. However, in practice, image data distribution changes with clinical conditions, such as different scanner manufacturers, imaging settings, and statistics regions. Although one can further train the model on new data samples, updating a model with data from an unknown distribution will always result in the model’s performance degradation on the learned data, a notorious phenomenon called catastrophic forgetting. Therefore affects the applicability of DL algorithms in continuously changing clinical scenarios. In this study, we have proposed a new method to address the impact of changing distributions in continual learning scenarios and alleviate catastrophic forgetting. A gradient regularization approach is used to suppress forgetting, and a replay-oriented consistency calculation method combined with a subspace weighting strategy is proposed to improve the model plasticity further. The proposed replay-oriented gradient projection memory (RO-GPM) is evaluated on multiple fundus disease diagnosis datasets including a real-world application and a continual learning benchmark. The quantitative and visualization results demonstrate that the proposed RO-GPM achieves superior performance to state-of-the-art algorithms by a large margin.1
关键词
学校署名
其他
相关链接[IEEE记录]
来源库
IEEE
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9995580
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/418625
专题工学院_斯发基斯可信自主研究院
工学院_计算机科学与工程系
作者单位
1.Huawei Technology Co. Ltd
2.Research Institute of Trustworthy Autonomous Systems, Southern University of Science and Technology
3.Department of Computer Science and Engineering, Southern University of Science and Technology
推荐引用方式
GB/T 7714
Kuang Shu,Heng Li,Jie Cheng,et al. Replay-Oriented Gradient Projection Memory for Continual Learning in Medical Scenarios[C],2022:1724-1729.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Kuang Shu]的文章
[Heng Li]的文章
[Jie Cheng]的文章
百度学术
百度学术中相似的文章
[Kuang Shu]的文章
[Heng Li]的文章
[Jie Cheng]的文章
必应学术
必应学术中相似的文章
[Kuang Shu]的文章
[Heng Li]的文章
[Jie Cheng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。