题名 | A Value-based Dynamic Learning Approach for Vehicle Dispatch in Ride-Sharing |
作者 | |
DOI | |
发表日期 | 2022
|
会议名称 | IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
|
ISSN | 2153-0858
|
ISBN | 978-1-6654-7928-8
|
会议录名称 | |
页码 | 11388-11395
|
会议日期 | 23-27 Oct. 2022
|
会议地点 | Kyoto, Japan
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | To ensure real-time response to passengers, existing solutions to the vehicle dispatch problem typically optimize dispatch policies using small batch windows and ignore the spatial-temporal dynamics over the long-term horizon. In this paper, we focus on improving the long-term performance of ride-sharing services and propose a deep reinforcement learning based approach for the ride-sharing dispatch problem. In particular, this work includes: (1) an offline policy evaluation (OPE) based method to learn a value function that indicates the expected reward of a vehicle reaching a particular state; (2) an online learning procedure to update the offline trained value function to capture the real-time dynamics during the operation; (3) an efficient online dispatch method that optimizes the matching policy by considering both past and future influences. Extensive simulations are conducted based on New York City taxi data, and show that the proposed solution further increases the service rate compared to the state-of-the-art far-sighted ride-sharing dispatch approach. |
关键词 | |
学校署名 | 第一
|
语种 | 英语
|
相关链接 | [IEEE记录] |
收录类别 | |
资助项目 | Shenzhen Fundamental Research Program[JCYJ20200109141622964]
|
WOS研究方向 | Automation & Control Systems
; Computer Science
; Engineering
; Robotics
|
WOS类目 | Automation & Control Systems
; Computer Science, Artificial Intelligence
; Engineering, Electrical & Electronic
; Robotics
|
WOS记录号 | WOS:000909405303045
|
来源库 | IEEE
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9981216 |
引用统计 |
被引频次[WOS]:2
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/418656 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | 1.Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China 2.School of Computer Science, University of Birmingham, Birmingham, UK 3.Research Institute of Trustworthy Autonomous System, Southern University of Science and Technology, Shenzhen, China |
第一作者单位 | 计算机科学与工程系 |
第一作者的第一单位 | 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Cheng Li,David Parker,Qi Hao. A Value-based Dynamic Learning Approach for Vehicle Dispatch in Ride-Sharing[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2022:11388-11395.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论