中文版 | English
题名

Learning to Approximate: Auto Direction Vector Set Generation for Hypervolume Contribution Approximation

作者
发表日期
2022
DOI
发表期刊
ISSN
1941-0026
EISSN
1941-0026
卷号PP期号:99页码:1-1
摘要
Hypervolume contribution is an important concept in evolutionary multiobjective optimization (EMO). It involves hypervolume-based EMO algorithms and hypervolume subset selection algorithms. Its main drawback is that it is computationally expensive in high-dimensional spaces, which limits its applicability to many-objective optimization. Recently, an R2 indicator variant (i.e., R2HVC indicator) is proposed to approximate the hypervolume contribution. The R2HVC indicator uses line segments along a number of direction vectors for hypervolume contribution approximation. It has been shown that different direction vector sets lead to different approximation qualities. In this article, we propose learning to approximate (LtA), a direction vector set generation method for the R2HVC indicator. The direction vector set is automatically learned from training data. The learned direction vector set can then be used in the R2HVC indicator to improve its approximation quality. The usefulness of the proposed LtA method is examined by comparing it with other commonly used direction vector set generation methods for the R2HVC indicator. Experimental results suggest the superiority of LtA over the other methods for generating high-quality direction vector sets.
关键词
相关链接[IEEE记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一
ESI学科分类
COMPUTER SCIENCE
Scopus记录号
2-s2.0-85146232550
来源库
IEEE
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9993794
引用统计
被引频次[WOS]:0
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/419361
专题工学院_计算机科学与工程系
作者单位
Department of Computer Science and Engineering, Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation, Southern University of Science and Technology, Shenzhen, China
第一作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Ke Shang,Tianye Shu,Hisao Ishibuchi. Learning to Approximate: Auto Direction Vector Set Generation for Hypervolume Contribution Approximation[J]. IEEE Transactions on Evolutionary Computation,2022,PP(99):1-1.
APA
Ke Shang,Tianye Shu,&Hisao Ishibuchi.(2022).Learning to Approximate: Auto Direction Vector Set Generation for Hypervolume Contribution Approximation.IEEE Transactions on Evolutionary Computation,PP(99),1-1.
MLA
Ke Shang,et al."Learning to Approximate: Auto Direction Vector Set Generation for Hypervolume Contribution Approximation".IEEE Transactions on Evolutionary Computation PP.99(2022):1-1.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Ke Shang]的文章
[Tianye Shu]的文章
[Hisao Ishibuchi]的文章
百度学术
百度学术中相似的文章
[Ke Shang]的文章
[Tianye Shu]的文章
[Hisao Ishibuchi]的文章
必应学术
必应学术中相似的文章
[Ke Shang]的文章
[Tianye Shu]的文章
[Hisao Ishibuchi]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。