[1] Novoselov K. S G, A. K, Morozov S. V, et al., Electric field effect in atomically thin carbon films[J], Science, 2004,306(22):666-669.
[2] Ma Y, Dai, Y., Guo, M., et al., Electronic and magnetic properties of perfect, vacancy-doped, and nonmetal adsorbed MoSe2, MoTe2 and WS2 monolayers[J], Physical Chemistry Chemical Physics, 2011,13(34):15546-15553.
[3] Saito R, Hofmann M, Dresselhaus G, et al., Raman spectroscopy of graphene and carbon nanotubes[J], Advances in Physics, 2011,60(3):413-550.
[4] Crassee I, Levallois J, Walter A L, et al., Giant faraday rotation in single- and multilayer graphene[J], Nature Physics, 2010,7(1):48-51.
[5] Zhu J, Christensen J, Jung J, et al., A holey-structured metamaterial for acoustic deep-subwavelength imaging[J], Nature Physics, 2010,7(1):52-55.
[6] Mak K F, Shan J, Heinz T F, Seeing many-body effects in single- and fewlayer graphene: observation of two-dimensional saddle-point excitons[J], Physical Review Letters, 2011,106(4):046401.
[7] Radisavljevic B, Radenovic A, Brivio J, et al., Single-layer MoS2 transistors[J], Nature Nanotechnology, 2011,6(3):147-150.
[8] Geim A K, Grigorieva I V, Vander Waals heterostructures[J], Nature, 2013,499(7459):419-425.
[9] Fu S, Kang K, Shayan K, et al., Enabling room temperature ferromagnetism in monolayer MoS2 via in-situ iron-doping[J], Nature Communications, 2020,11(1):2034.
[10] Wang H, Huang X, Lin J, et al., High-quality monolayer superconductor NbSe2 grown by chemical vapour deposition[J], Nature Communications, 2017,8(1):394.
[11] Kim J, Kim K W, Shin D, et al., Prediction of ferroelectricity-driven berry curvature enabling charge- and spin-controllable photocurrent in tin telluride monolayers[J], Nature Communications, 2019,10(1):3965.
[12] Koppens F H, Mueller T, Avouris P, et al., Photodetectors based on graphene, other two-dimensional materials and hybrid systems[J], Nature Nanotechnology, 2014,9(10):780-793.
[13] Liu X, Galfsky T S, Zheng X, et al., Strong light–matter coupling in two dimensional atomic crystals[J], Nature Photonics, 2014,9(1):30-34.
[14] Cepellotti A F, Paulatto L, Lazzeri M, et al., Phonon hydrodynamics in two dimensional materials[J], Nature Communications, 2015,6(6400):1-7.
[15] Yang X, Zhang X, Deng J, et al., Efficient green light-emitting diodes based on quasi-two-dimensional composition and phase engineered perovskite with surface passivation[J], Nature Communications, 2018,9(1):570.
[16] Allain A, Kang J, Banerjee K, et al., Electrical contacts to two-dimensional semiconductors[J], Nature Materials, 2015,14(12):1195-1205.
[17] Ozeki Y, Umemura W, Otsuka Y, et al., High-speed molecular spectral imaging of tissue with stimulated Raman scattering[J], Nature Photonics, 2012,6(12):845-851.
[18] Xu X, Pereira L F, Wang Y, et al., Length-dependent thermal conductivity in suspended single-layer graphene[J], Nature Communications, 2014,5(3689):1-6.
[19] Shimon K, Ania C, Bleszynski J, et al., Coherent sensing of a mechanical resonator with a single-spin qubit[J], Science, 2012,335(30):1603-1606.
[20] Li B, Huang L, Zhong M, et al., Synthesis and transport properties of largescale alloy Co0.16Mo0.84S2 bilayer nanosheets[J], ACS nano, 2015,9(2):1257–1262.
[21] Zhang K, Feng S, Wang J, et al., Manganese doping of monolayer MoS2: the substrate is critical[J], Nano Letters, 2015,15(10):6586-6591.
[22] Ryee S, Yoon H, Kim T J, et al., Induced magnetic two-dimensionality by hole doping in the superconducting infinite-layer nickelate Nd1−xSrxNiO2[J], Physical Review B, 2020,101(6):0645131-0645135.
[23] Mishra R, Zhou W, Pennycook S J, et al., Long-range ferromagnetic ordering in manganese-doped two-dimensional dichalcogenides[J], Physical Review B, 2013,88(14):1444091-1444095.
[24] Gong C, Li L, Li Z, et al., Discovery of intrinsic ferromagnetism in two dimensional van der Waals crystals[J], Nature, 2017,546(7657):265-269.
[25] Huang B, Clark G, Navarro-Moratalla E, et al., Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit[J], Nature, 2017,546(7657):270-273.
[26] Sun Z, Yi Y, Song T, et al., Giant nonreciprocal second-harmonic generation from antiferromagnetic bilayer CrI3[J], Nature, 2019,572(7770):497-501.
[27] Huang B, Clark G, Klein D R, et al., Electrical control of 2D magnetism in bilayer CrI3[J], Nature Nanotechnology, 2018,13(7):544-548.
[28] Burch K S, Mandrus D, Park J G, Magnetism in two-dimensional van der Waals materials[J], Nature, 2018,563(7729):47-52.
[29] Gong C, Zhang X, Two-dimensional magnetic crystals and emergent heterostructure devices[J], Science, 2019,363(6428):1-11.
[30] Kim H H, Yang B, Li S, et al., Evolution of interlayer and intralayer magnetism in three atomically thin chromium trihalides[J], Proceedings of the National Academy of Sciences, 2019,116(23):11131-11136.
[31] Mak K F, Shan J, Ralph D C, Probing and controlling magnetic states in 2D layered magnetic materials[J], Nature Reviews Physics, 2019,1(11), 646-661.
[32] Jiang S, Li L, Wang Z, et al., Controlling magnetism in 2D CrI3 by electrostatic doping[J], Nature Nanotechnology, 2018,13(7):549-553.
[33] Zhang J, Zhao B, Zhou T, et al., Strong magnetization and Chern insulators in compressed graphene/CrI3 van der Waals heterostructures[J], Physical Review B, 2018,97(8):085401.
[34] Chen L, Chung J-H, Gao B, et al., Topological Spin Excitations in Honeycomb Ferromagnet CrI3[J], Physical Review X, 2018,8(4):041028.
[35] Jiang S, Li L, Wang Z, et al., Spin tunnel field-effect transistors based on two-dimensional van der Waals heterostructures[J], Nature Electronics, 2019,2(4):159-163.
[36] Jiang S, Shan J, Mak K F, Electric-field switching of two-dimensional van der Waals magnets[J], Nature Materials, 2018,17(5):406-410.
[37] Yekta Y, Hadipour H, Şaşıoğlu E, et al., Strength of effective Coulomb interaction in two-dimensional transition-metal halides MX2 and MX3 (M=Ti, V, Cr, Mn, Fe, Co, Ni; X=Cl, Br, I)[J], Physical Review Materials, 2021,5(3):0340011-03400110.
[38] Mcguire M, Crystal and magnetic structures in layered, transition metal dihalides and trihalides[J], Crystals, 2017,7(5):121-146.
[39] Ferrari A C, Meyer, J. C, Scardaci, V, et al. Raman spectrum of graphene and graphene layers[J], Physical Review Letters, 2006,97(18):187401.
[40] Ferrari A C, Basko D M, Raman spectroscopy as a versatile tool for studying the properties of graphene[J], Nature Nanotechnology, 2013,8(4):235-246.
[41] Papasimakis N, Mailis S, Huang C C, et al., Strain engineering in graphene by laser irradiation[J], Applied Physics Letters, 2015,106(6):0619041-0619044.
[42] Mueller N S, Heeg S, Alvarez M P, et al., Evaluating arbitrary strain configurations and doping in graphene with Raman spectroscopy[J], 2D Materials, 2017,5(1):0150161-01501610.
[43] Song S, Keum D H, Cho S, et al., Room temperature semiconductor-metal transition of MoTe2 thin films engineered by strain[J], Nano Letters, 2016,16(1):188-193.
[4
[44] Zhang B, Cai, C, Zhu, H, et al., Phonon blocking by two dimensional electrongas in polar CdTe/PbTe heterojunctions[J], Applied Physics Letters, 2014,104(16):161601
[45] Chen S Y, Zheng C, Fuhrer M S, et al., Helicity-resolved Raman scattering of MoS2, MoSe2, WS2, and WSe2 atomic layers[J], Nano Letters, 2015,15(4):2526-2532.
[46] Lee J U, Lee S, Ryoo J H, et al., Ising-type magnetic ordering in atomically thin FePS3[J], Nano Letters, 2016,16(12):7433-7438.
[47] Long G, Zhang T, Cai X, et al., Isolation and characterization of few-layer manganese thiophosphite[J], ACS nano, 2017,11(11):11330-11336.
[48] Wang Y M, Zhang J F, Li C H, et al., Raman scattering study of magnetic layered MPS3 crystals (M=Mn, Fe, Ni)[J], Chinese Physics B, 2019,28(5):056301.
[49] Jin W, Kim H H, Ye Z, et al., Raman fingerprint of two terahertz spin wave branches in a two-dimensional honeycomb Ising ferromagnet[J], Nature Communications, 2018,9(1):5122.
[50] Kandus A, Kunze Kerstin E, Tsagas C G., Primordial magnetogenesis[J], Physics Reports, 2011,505(1):1-58.
[51] Parker E N, The origin of magnetic fields[J], The Astrophysical Journal, 1970,160(2):383-404.
[52] Subramanian K, The origin, evolution and signatures of primordial magnetic fields[J], Report Progress Physics, 2016,79(7):076901.
[53] Wang B M, Liu Y, Ren P, et al., Large exchange bias after zero-field cooling from an unmagnetized state[J], Physical Review Letters, 2011,106(7):077203.
[54] Wu F, Yang K, Li Q, et al., Biomass-derived 3D magnetic porous carbon fibers with a helical/chiral structure toward superior microwave absorption[J], Carbon, 2021,173(8):918-931.
[55] Lu P, Wu X, Guo W, et al., Strain-dependent electronic and magnetic properties of MoS2 monolayer, bilayer, nanoribbons and nanotubes[J], Physical Chemistry Chemical Physics, 2012,14(37):13035-13040.
[56] Kim Y, Yuk H, Zhao R, et al , Printing ferromagnetic domains for untethered fast-transforming soft materials[J], Nature, 2018,558(7709):274-279.
[57] Zhao B, Li Y, Zeng Q, et al., Galvanic replacement reaction involving core shell magnetic chains and orientation-tunable microwave absorption properties[J], Small, 2020,16(40):e2003502.
[58] Pontin D I, Three-dimensional magnetic reconnection regimes: A review[J], Advances in Space Research, 2011,47(9):1508-1522.
[59] Mermin N D, Wagner H., Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic heisenberg models[J], Physical Review Letters, 1966,17(22):1133-1136.
[60] Hohenberg P C, Existence of Long-range order in one and two dimensions[J],Physical Review, 1967,158(2):383-386.
[61] Elliott R J, Loudon R, The possible observation of electronic Raman transition in crystals[J], Physics Letters, 1963,3(4):189-191.
[62] Fei Z, Huang B, Malinowski P, et al., Two-dimensional itinerant ferromagnetism in atomically thin Fe3GeTe2[J], Nature Materials, 2018,17(9):778-782.
[63] Blei M, Lado J L, Song Q, et al., Synthesis, engineering, and theory of 2D van der Waals magnets[J], Applied Physics Reviews, 2021,8(2):021301.
[64] Wei S, Liao X, Wang C, et al., Emerging intrinsic magnetism in twodimensional materials: theory and applications[J], 2D Materials, 2020,8(1):012005.
[65] Lado J L, Fernández-Rossier J, On the origin of magnetic anisotropy in two dimensional CrI3[J], 2D Materials, 2017,4(3):035002.
[66] Torelli D, Thygesen K S, Olsen T, High throughput computational screening for 2D ferromagnetic materials: the critical role of anisotropy and local correlations[J], 2D Materials, 2019,6(4):045018.
[67] Pappas D. Kamper K, Hopster H, Reversible transition between perpendicular and in-plane magnetization in ultrathin films[J], Physical Review Letters, 1990,64(26):3179-3182.
[68] Niu B, Su T, Francisco B A, et al., Coexistence of magnetic orders in two dimensional magnet CrI3[J], Nano Letters, 2020,20(1):553-558.
[69] Li S, Ye Z, Luo X, et al., Magnetic-field-induced quantum phase transitions in a van der Waals magnet[J], Physical Review X, 2020,10(1):011075.
[70] Mcguire M A, Clark G, Kc S, et al., Magnetic behavior and spin-lattice coupling in cleavable van der Waals layered CrCl3 crystals[J], Physical Review Materials, 2017,1(1):014001.
[71] Kezilebieke S, Huda M N, Vano V, et al., Topological superconductivity in a van der Waals heterostructure[J], Nature, 2020,588(7838):424-428.
[72] Yang S, Zhang T, Jiang C, Van der Waals magnets: material family, detection and modulation of magnetism, and perspective in spintronics[J], Advance Science, 2021,8(2):2002488.
[73] Wang X, Du K, Liu Y Y, et al., Raman spectroscopy of atomically thin two dimensional magnetic iron phosphorus trisulfide (FePS3) crystals[J], 2D Materials, 2016,3(3):031009.
[74] Liu Q Y, Wang L, Fu Y, et al., Magnetic order in XY-type antiferromagnetic monolayer CoPS3 revealed by Raman spectroscopy[J], Physical Review B, 2021,103(23):2354111-2354117.
[75] Chittari B L, Park Y, Lee D, et al., Electronic and magnetic properties of single-layer MPX3 metal phosphorous trichalcogenides[J], Physical Review B, 2016,94(18):184428
[76] Du K Z, Wang X Z, Liu Y, et al., Weak van der Waals stacking, wide-range band gap, and raman study on ultrathin layers of metal phosphorus trichalcogenides[J], ACS nano, 2016,10(2):1738-1743.
[77] Deng Y,Yu Y, Song Y, et al., Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2[J], Nature, 2018,563(7729):94-99.
[78] Tan C, Lee J, Jung S G, et al., Hard magnetic properties in nanoflake van der Waals Fe3GeTe2[J], Nature Communications, 2018,9(1):1554.
[79] Seo J, Kim D Y, An E S, Nearly room temperature ferromagnetism in a magnetic metal-rich van der Waals metal [J], Science Advances, 2020,6(3):1-9.
[80] Alahmed L, Nepal B, Macy J, et al., Magnetism and spin dynamics in room temperature van der Waals magnet Fe5GeTe2[J], 2D Materials, 2021,8(4):045030.
[81] Sivadas N, Daniels M W, Swendsen R H, et al., Magnetic ground state of semiconducting transition-metal trichalcogenide monolayers[J], Physical Review B, 2015,91(23):235425.
[82] Gong C, Kim E M, Wang Y, et al., Multiferroicity in atomic van der Waals heterostructures[J], Nature Communications, 2019,10(1):2657.
[83] Yang H, Wang F, Zhang H, et al., Solution synthesis of layered van der Waals ferromagnetic CrGeTe3 nanosheets from a non-vdW Cr2Te3 template[J], Journal of the American Chemical Society, 2020,142(9):4438-4444.
[84] Kanamaru S Y, Koizumi M, Nagai S., Synthesis and some properties of a layer-type inorganic-organic complex of FeOCl and pyridine[J], Chemistry. Letters, 1974,4(3):373-376
[85] Krimmel A, Strempfer J, Bohnenbuck B, et al., Incommensurate structure of the spin-Peierls compound TiOCl in zero and finite magnetic fields[J], Physical Review B, 2006,73(17):172413.
[86] Smaalen P S, Lukas A, Incommensurate interactions and nonconventional spin-Peierls transition in TiOBr[J], Physical Review B, 2005,72(2):020105.
[87] Angelkort J, Wölfel A, Schönleber A, et al., Observation of strong magnetoelastic coupling in a first-order phase transition of CrOCl[J], Physical Review B, 2009,80(14):144416
[88] Otrokov M M, Klimovskikh I I, Bentmann H, et al., Prediction and observation of an antiferromagnetic topological insulator[J], Nature, 2019,576(7787):416-422.
[89] Hu C, Gordon K N, Liu P, et al., A van der Waals antiferromagnetic topological insulator with weak interlayer magnetic coupling[J], Nature Communications, 2020,11(1):97.
[90] Liu C, Wang Y, Li H, et al., Robust axion insulator and Chern insulator phases in a two-dimensional antiferromagnetic topological insulator[J], Nature Materials, 2020,19(5):522-527.
[91] Zhang D, Shi M, Zhu T, et al., Topological axion states in the magnetic insulator MnBi2Te4 with the quantized magnetoelectric effect[J], Physical Review Letters, 2019,122(20):206401.
[92] Otrokov M M, Rusinov I P, Blanco-Rey M, et al., Unique thicknessdependent properties of the van der Waals interlayer antiferromagnet MnBi2Te4 Films[J], Physical Review Letters, 2019,122(10):107202.
[93] Bender S A, Duine, R A, Tserkovnyak Y, Electronic pumping of quasiequilibrium Bose-Einstein-condensed magnons[J], Physical Review Letters, 2012,108(24):246601.
[94] Brockhouse B N, Scattering of neutrons by spin waves in magnetite[J], Physical Review, 1957,106(5):859-864.
[95] Nikuni T O, Oosawa A, Tanaka H, Bose-Einstein condensation of dilute magnons in TlCuCl3[J], Physical Review Letters, 2000,84(25):5868.
[96] Demokritov S O, Demidov V. E, Dzyapko O, et al., Bose-Einstein condensation of quasi-equilibrium magnons at room temperature under pumping[J], Nature, 2006,443(7110):430-433.
[97] Uchida K, Adachi H, Kikuchi D, et al., Generation of spin currents by surface plasmon resonance[J], Nature Communications, 2015,6(6910):5910.
[98] Pershoguba S S, Banerjee S, Lashley J C, et al., Dirac magnons in honeycombferromagnets[J], Physical Review X, 2018,8(1):011010.
[99] Ghazaryan D, Greenaway M T, Wang Z, et al., Magnon-assisted tunnelling in van der Waals heterostructures based on CrBr3[J], Nature Electronics, 2018,1(6):344-349.
[100] Bass F G, Kaganov M I, Raman scattering of electromagnetic waves in ferromagnetic dielectrics [J], Soviet physics, 1960,37(5):986-988.
[101] Loudon R, The Raman effect in crystals[J], Advances in Physics,1964,13(52):423-482.
[102] Cenker J, Huang B, Suri N, et al., Direct observation of two-dimensional magnons in atomically thin CrI3[J], Nature Physics, 2020,17(1):20-25.
[103] Mccreary A, Simpson J R, Mai T T, et al., Quasi-two-dimensional magnon identification in antiferromagnetic FePS3 via magneto-Raman spectroscopy[J], Physical Review B, 2020,101(6):064416.
[104] Kim K, Lim S Y, Lee J U, et al., Suppression of magnetic ordering in XXZtype antiferromagnetic monolayer NiPS3[J], Nature Communications, 2019,10(1):345.
[105] Kim K, Lim S Y, Kim J, et al., Antiferromagnetic ordering in van der Waals 2D magnetic material MnPS3 probed by Raman spectroscopy[J], 2D Materials, 2019,6(4):041001.
[106] Sun Y J, Tan Q H, Liu X L, et al., Probing the magnetic ordering of antiferromagnetic MnPS3 by raman spectroscopy[J], Journal of Physical Chemistry Letters, 2019,10(11):3087-3093.
[107] Tian Y, Gray M J, Ji H, et al., Magneto-elastic coupling in a potential ferromagnetic 2D atomic crystal[J], 2D Materials, 2016,3(2):025035.
[108] Milosavljević A, Šolajić A, Djurdjić-Mijin S, et al., Lattice dynamics and phase transitions in Fe3−xGeTe2[J], Physical Review B, 2019,99(21):214304.
[109] Li T, Jiang S, Sivadas N, et al., Pressure-controlled interlayer magnetism in atomically thin CrI3[J], Nature Materials, 2019,18(12):1303-1308.
[110] Huang B, Cenker J, Zhang X, et al., Tuning inelastic light scattering via symmetry control in the two-dimensional magnet CrI3[J], Nature Nanotechnology, 2020,15(3):212-216.
[111] Zhang Y, Wu X, Lyu B, et al., Magnetic order-induced polarization anomaly of raman scattering in 2D magnet CrI3[J], Nano Letters, 2020,20(1):729-734.
[112] Yin T, Ulman K A, Liu S, et al., Chiral phonons and giant magneto-optical effect in CrBr3 2D magnet[J], Advance Materials, 2021,33(36):e2101618.
[113] Mccreary A, Mai T T, Utermohlen F G, et al., Distinct magneto-Raman signatures of spin-flip phase transitions in CrI3[J], Nature Communications, 2020,11(1):3879.
[114] Fleury P A, Loudon R, Scattering of light by one- and two-magnon excitations[J], Physical Review, 1968,166(2):514-530.
[115] Thuc T. Mai K G, Amber M, et al., Magnon-phonon hybridization in 2D antiferromagnet MnPSe3[J], Science Advances, 2021,7(3106):1-6.
[116] Liu S, Granados D A, Bhowmick D, et al., Direct observation of magnonphonon strong coupling in two-dimensional antiferromagnet at high magnetic fields[J], Physical Review Letters, 2021,127(9):097401.
[117] Vaclavkova D, Palit M, Wyzula J, et al., Magnon polarons in the van der Waals antiferromagnet FePS3[J], Physical Review B, 2021,104(13):1344371-1344378.
[118] Kong T, Stolze K, Timmons E I, et al., VI3-a new layered ferromagnetic semiconductor[J], Advance Materials, 2019,31(17):1808074.
[119] Tian S, Zhang J F, Li C, et al., Ferromagnetic van der Waals crystal VI3[J], Journal of the American Chemical Society, 2019,141(13):5326-5333.
[120] Doležal P, KratochvílováM, Holý V, et al., Crystal structures and phase transitions of the van der Waals ferromagnet VI3[J], Physical Review Materials, 2019,3(12):121401.
[121] Son S, Coak M J, Lee N, et al., Bulk properties of the van der Waals hard ferromagnet VI3[J], Physical Review B, 2019,99(4):041402.
[122] Liu Y, Abeykoon M, Petrovic C, Critical behavior and magnetocaloric effect in VI3[J], Physical Review Research, 2020,2(1):013013.
[123] Gati E, Inagaki Y, Kong T, et al., Multiple ferromagnetic transitions and structural distortion in the van der Waals ferromagnet VI3 at ambient and finite pressures[J], Physical Review B, 2019,100(9):094408.
[124] Djurdjic M S, Abeykoon A M, Solajic A, et al., Short-range order in VI3[J], Inorganic Chemistry, 2020,59(22):16265-16271.
[125] Wang Y M, Tian S J, Li C H, et al., Raman scattering study of twodimensional magnetic van der Waals compound VI3[J], Chinese Physics B,2020,29(5):056301.
[126] Kong T, Guo S, Ni D, et al., Crystal structure and magnetic properties of the layered van der Waals compound VBr3[J], Physical Review Materials,2019,3(8):084419.
[127] Liu L, Yang K, Wang G, et al., Two-dimensional ferromagnetic semiconductor VBr3 with tunable anisotropy[J], Journal of Materials Chemistry C, 2020,8(42):14782-14788.
[128] Robert R E, Roddy J W, The vapor pressures of vanadium chloride, vanadium chloride, vanadium bromide, and vanadium bromide by knudsen effusion[J], Inorganic Chemistry, 1964,3(60):60-63.
[129] Neumann H, Bellabarba C, Khan A, et al., Optical properties of MnIn2Se4[J], Crystal. Reseach. Technology, 1986,21(1):K21-K24
[130] Doll G, Lux-Steiner M, Bucher E, et al., Chemical vapour transport and stuctural characterization of layered MnIn2Se4 single cryatals[J], Journal of Crystal Growth, 1990,104(90):593-600.
[131] Doll G, Baumann J R, Bucher E, et al., Range structural and magnetic properties of the ternary manganese compound semiconductors MnAl2Te4, MnIn2Te4, and MnIn2Se4[J], Physica Status Solidi, 1991,126(61), 237-244.
[132] Range K, Döll G, Bucher E, et al., The crystal structure of MnIn2Se4 a ternary layered semiconductor[J], Notizen, 1991,46b:1122-1124.
[133]Haeuseler H, Reinen D, Kesper U, Materials with layered structures.VII.subsolidus phase diagram of the system MnIn2Se4-MnIn2Se4 and characterization of the layered materials MnIn2SxSe4-x by electrical measurements and diffuse reflectance spectroscopy[J], JournaI of Solid State Chemistry, 1993,106(9):501-505.
[134] Berand N, Range K J, Rietveld structure refinement of two high-pressure spinels Znln2S4 and Mnln2Se4 [J], Journal of Alloys and Compounds, 1996, 241(1):29-33.
[135] Tovar R, Quintero M Q, Bocaranda P, et al., Magnetic behaviour for the MnIn2(1-z)Ga2zSe4 alloys[J], Physica Status Solidi (b), 2000,220(8):435.
[136] Sagredoa V, Attolinic G, Magnetic properties of MnGa2Se4–MnIn2Se4 single crystal semiconductors[J], Physica B, 2002,320:407-409.
[137] Choi J Y, Jiyoun S C, Hwang Y. H, et al., Magnetic and optical properties of MnIn2Se4 single crystal[J], Journal of the Korean Physical Society, 2004,45(3):672-674.
[138] Mantilla C B, Haar V, Coaquira E, et al., Spin glass behavior in MnIn2Se4 and Zn1−xMnxIn2Se4 magnetic semiconductors[J], Journal of Magnetism and Magnetic Materials, 2004,272-276(10):1308-1309.
[139] Mantilla J T H, Coaquira E, Bindilatti A H, Experimental evidence of the spin-glass transition in the diluted magnetic semiconductor Zn1−xMnxIn2Se4[J], Journal of Physics: Condensed Matter, 2008,20(45):455211.
[140] Mantilla J B, Haar G E S, Sagredo E, et al., The structure of Zn1-xMnxIn2Se4 crystals grown by chemical vapour phase transport[J], Journal of Physics:Condensed Matter, 2004,16(21):3555-3562.
[141] Rincón C, Torrres T E, Sagredo V, et al., The fundamental absorption edge in MnIn2Se4 layer semi-magnetic semiconductor[J], Physica B: Condensed Matter, 2015,477(9):123-128.
[142] Yang J, Zhou Z, Fang J, et al., Magnetic and transport properties of a ferromagnetic layered semiconductor MnIn2Se4[J], Applied Physics Letters,2019,115(22): 032005.
[143] Fourcaudot G, Vapor phase transport and crystal growth of molybdenum trioxide and molybdenum ditelluride[J], Journal of Crystal Growth,1979,46(1):132-135.
[144] Watson A J, Lu W, Guimarães M H D, et al., Transfer of large-scale two dimensional semiconductors: challenges and developments[J], 2D Materials,2021,8(3):032001.
[145] Muratore C, Hu J J, Wang B, et al., Continuous ultra-thin MoS2 films grown by low-temperature physical vapor deposition[J], Applied Physics Letters, 2014,104(26):261604.
[146] Li X, Zhang J, Puretzky A A, et al., Isotope-engineering the thermal conductivity of two-dimensional MoS2[J], ACS nano, 2019,13(2):2481-2489.
[147] Lin G T, Zhuang H L, Luo X, et al., Tricritical behavior of the twodimensional intrinsically ferromagnetic semiconductor CrGeTe3[J], Physical Review B, 2017,95(24):245212.
[148] May A F, Calder S, Cantoni C, et al., Magnetic structure and phase stability of the van der Waals bonded ferromagnet Fe3−xGeTe2[J], Physical Review B, 2016,93(1):014411.
[149] Zhu F F, Chen W J, Xu Y, et al., Epitaxial growth of two-dimensional stanene[J], Nature Materials, 2015,14(10):1020-1025.
[150] Utama M I, Lu X., Zhan D, et al., Etching-free patterning method for electrical characterization of atomically thin MoSe2 films grown by chemical vapor deposition[J], Nanoscale, 2014,6(21):12376-12382.
[151] Novoselov K S, Castro N, Two-dimensional crystals-based heterostructures:materials with tailored properties[J], Physica Scripta, 2012,146(27): 0140061-0140066.
[152] Liu Y P, Ning B Y, Gong L C, et al., A new model to predict optimum conditions for growth of 2D materials on a substrate[J], Nanomaterials (Basel), 2019,9(7):1-14.
[153] Wang B, Zhou Q, Wang J, Theoretical simulation and design of twodimensional ferromagnetic materials[J], Chinese Science Bulletin, 2020,66(6):551-562.
[154] Von D , Juza D G, Harald schafer uber die vanadinjodide VI2 und VI3[J], Zeitschrift Anorganische Allgemeine Chemie., 1969,366(13):121-129.
[155] Guo Q, Wei Z, Xue Z, et al., Semidry release of nanomembranes for tubular origami[J], Applied Physics Letters, 2020,117(11):113106.
[156] Li Q, Bi S, Bu J, et al., Atomic layer dependence of shear modulus in a two dimensional single-crystal organic-inorganic hybrid perovskite[J], The Journal of Physical Chemistry C, 2019,123(24):15251-15257.
[157] Novoselov K S, Morozov S V, Jiang D, et al., Electric field effect in atomically thin carbon films[J], Science, 2004,306(22):666-669.
[158] Novoselov K. S, Booth T. J, Khotkevich V V, et al., Two-dimensional atomic crystals[J], PNAS, 2005,102(30):10451-10453.
[159] Huang Y, Pan Y H, Yang R, et al., Universal mechanical exfoliation of large-area 2D crystals[J], Nat Commun, 2020,11(1):2453.
[160] Hur H K, Kocabas D Y, Rogers C, et al., Nanotransfer printing by use of noncovalent surface forces: Applications to thin-film transistors that use single-walled carbon nanotube networks and semiconducting polymers[J], Applied Physics Letters, 2004,85(23):5730-5732.
[161] Jung Y, Choi M S, Nipane A, et al., Transferred via contacts as a platform for ideal two-dimensional transistors[J], Nature Electronics, 2019,2(5):187-194.
[162] Masubuchi S, Morimoto M, Morikawa S, et al., Autonomous robotic searching and assembly of two-dimensional crystals to build van der Waals superlattices[J], Nature Communications, 2018,9(1):1413.
[163] Jonathan N, Coleman M L, Arlene O, et al., Two-dimensional nanosheets produced by liquid exfoliation of layered materials[J], Science, 2011,331(4):568-571.
[164] Pizzocchero F, Gammelgaard L, Jessen B S, et al., The hot pick-up technique for batch assembly of van der Waals heterostructures[J], Nature Communications, 2016,7(1),189412.
[165] Kovalev A A, Tishchenko L A, Shashurin V D, et al., Application of X-ray diffraction methods to studying materials[J], Russian Metallurgy (Metally), 2018,2017(13):1186-1193.
[166] Shymanovich U N, M. Lu, W. Kahle, et al., Toward ultrafast time-resolved Debye-Scherrer x-ray diffraction using a laser-plasma source[J], Review of Scientific Instruments, 2009,80(8):083102.
[167] Bezirganyan P, Application of the invariance principle for the diffraction of X-rays in real crystals[J], Physica Status Solidi A, 1987,100(20):389.
[168] Fetisov G V, X-ray diffraction methods for structural diagnostics of materials: progress and achievements[J], Physics-Uspekhi, 2020,63(1):2-32.
[169] Shen Q, Expanded distorted-wave theory for phase-sensitive X-ray diffraction in single crystals[J], Physical Review Letters, 1999,83(23):4784-4787.
[170] Yi M J, Chu J H, Cullen Y S, et al., Novel X-ray diffraction microscopy technique for measuring textured grains of thin-films[J], Nuclear Instruments and Methods in Physics Research Section A, 2005,551(1):157-161.
[171] Turner J J, Huang X, Krupin O, et al., X-ray diffraction microscopy of magnetic structures[J], Physical Review Letters, 2011,107(3):033904.
[172] Yeghiazaryan A M, Gevorgyan, K. M., Atanesyan, A. K., The new principle for intensity calculation of X-rays dynamically diffracted in single crystals with defects[J], Journal of Physics: Conference Series, 2014,517(1):012032.
[173] Qiu Z Q, Bader S D., Surface magneto-optic Kerr effect[J], Review of Scientific Instruments, 2000,71(3):1243-1255.
[174] Song T, Fei Z, Yankowitz M, et al., Switching 2D magnetic states via pressure tuning of layer stacking[J], Nature Materials, 2019,18(12):1298-1302.
[175] Zhao W, Fei Z, Song T, et al., Magnetic proximity and nonreciprocal current switching in a monolayer WTe2 helical edge[J], Nature Materials, 2020,19(5):503-507.
[176] Zhong D, Seyler K L, Linpeng X, et al., Layer-resolved magnetic proximity effect in van der Waals heterostructures[J], Nature Nanotechnology, 2020,15(3):187-191.
[177] Gibertini M, Koperski M, Morpurgo A F, et al., Magnetic 2D materials and heterostructures[J], Nature Nanotechnology, 2019,14(5):408-419.
[178] Rahaman M, Rodriguez R D, Plechinger G, et al., Highly localized strain in a MoS2/Au heterostructure revealed by tip-enhanced raman spectroscopy[J], Nano Letters, 2017,17(10):6027-6033.
[179] Niu Y, Gonzalez-Abad S, Frisenda R, et al., Thickness-dependent differential reflectance spectra of monolayer and few-layer MoS2, MoSe2, WS2 and WSe2[J], Nanomaterials, 2018,8(9):1-10.
[180] Wu X, Wang X, Li H, et al., Vapor growth of WSe2/WS2 heterostructures with stacking dependent optical properties[J], Nano Research, 2019,12(12):3123-3128.
[181] Sakamoto M, Saitow K I, Field enhancement of MoS2: visualization of the enhancement and effect of the number of layers[J], Nanoscale, 2018,10(47):22215-22222.
[182] Li G, Chen X, Gan Y, et al., Raman spectroscopy evidence for dimerization and Mott collapse in α-RuCl3 under pressures[J], Physical Review Materials, 2019,3(2):023601.
[183] Sandilands L J, Tian Y, Plumb K W, et al., Scattering continuum and possible fractionalized excitations in alpha-RuCl3[J], Physical Review Letters, 2015,114(14):147201.
[184] Lemmensa P G, Grosc C, Magnetic light scattering in low-dimensional[J], Physics Reports, 2003,375 (1):1-103.
[185] Fano U, Effects of configuration interaction on intensities and phase shifts[J], Physical Review, 1961,124(6):1866-1878.
[186] Li Z, Lui C H, Cappelluti E, et al., Structure-dependent Fano resonances in the infrared spectra of phonons in few-layer graphene[J], Physical Review Letters, 2012,108(15):156801.
[187] Hisatomi R, Noguchi A, Yamazaki R, et al., Helicity-changing brillouin light scattering by magnons in a ferromagnetic crystal[J], Physical Review Letters, 2019,123(20):207401.
[188] Higuchi T, Kanda N,Tamaru H, et al., Selection rules for light-induced magnetization of a crystal with threefold symmetry: the case of antiferromagnetic NiO[J], Physical Review Letters, 2011,106(4):047401.
[189] Toth S, Lake B, Linear spin wave theory for single-Q incommensurate magnetic structures[J], Journal of Physics Condensed Matter, 2015,27(16):166002.
[190] Wu M, Li Z, Cao T, et al., Physical origin of giant excitonic and magnetooptical responses in two-dimensional ferromagnetic insulators[J], Nature Communications, 2019,10(1):2371.
[191] Choi G M, Schleife A, Cahill D G, Optical-helicity-driven magnetization dynamics in metallic ferromagnets[J], Nature Communications, 2017,8(19):15085.
[192] Seyler K L, Zhong D, Klein D R, et al., Ligand-field helical luminescence in a 2D ferromagnetic insulator[J], Nature Physics, 2017,14(3):277-281.
[193] Lin Z, Huang B, Hwangbo K, et al., Magnetism and its structural coupling effects in 2D ising ferromagnetic insulator VI3[J], Nano Letters, 2021,21(21):9180-9186.
[194] Zhu W K, Lu C K, Tong W, et al., Strong ferromagnetism induced by canted antiferromagnetic order in double perovskite iridates(La1−xSrx)2ZnIrO6[J], Physical Review B, 2015,91(14):144408.
[195] Girtu M A, Wynn C M, Fujita W, et al., Glassiness and canted antiferromagnetism in three geometrically frustrated triangular quantum Heisenberg antiferromagnets with additional Dzyaloshinskii-Moriya interaction[J], Physical Review B, 2000,61(6):4117-4130.
[196] Lyu B, Gao Y, Zhang Y, et al., Probing the Ferromagnetism and Spin Wave Gap in VI3 by Helicity-Resolved Raman Spectroscopy[J], Nano Letters, 2020,20(8):6024-6031.
[197] Song T C, Cai X H, Tu M, et al. Giant tunneling magnetoresistance in spinfilter van der Waals heterostructures[J], Science, 2018,360(15):1214-1218.
[198] Woolley J C, Lamarche A M, Lamarche G, et al., Magnetic behaviour of some Mn III2.VI4 compounds and their alloys[J], Journal of Magnetism and Magnetic Materals, 1995,150 (95):353-362.
修改评论