[1] ZIMMET P, ALBERTI K, SHAW J. Global and Societal Implications of the Diabetes Epidemic [J]. Nature, 2001, 414(6865): 782-787.
[2] WALDRON-LYNCH F, HEROLD K C. Continuous Glucose Monitoring: Long Live the Revolution! [J]. Nature Clinical Practice Endocrinology & Metabolism, 2009, 5(2): 82-83.
[3] TAMBORLANE W V, BECK R W, BODE B W, et al. Continuous Glucose Monitoring and Intensive Treatment of Type 1 Diabetes [J]. New England Journal of Medicine, 2008, 359(14): 1464-1476.
[4] KLONOFF D C. Continuous Glucose Monitoring: Roadmap for 21st Century Diabetes Therapy [J]. Diabetes Care, 2005, 28(5): 1231-1239.
[5] MARATHE P H, GAO H X, CLOSE K L. American Diabetes Association Standards of Medical Care in Diabetes 2017 [J]. Journal of Diabetes, 2017, 9(4): 320-324.
[6] PICKUP J C. Management of Diabetes Mellitus: Is the Pump Mightier than the Pen? [J]. Nature Reviews Endocrinology, 2012, 8(7): 425-433.
[7] YU J C, ZHANG Y Q, YE Y Q, et al. Microneedle-Array Patches Loaded with Hypoxia-Sensitive Vesicles Provide Fast Glucose-Responsive Insulin Delivery [J]. Proceedings of the National Academy of Sciences, 2015, 112(27): 8260-8265.
[8] CLARK L C, LYONS C. Electrode Systems for Continuous Monitoring in Cardiovascular Surgery [J]. Annals of the New York Academy of Sciences, 1962, 102(1): 29-45.
[9] UPDIKE S J, HICKS G P. The Enzyme Electrode [J]. Nature, 1967, 214(5092): 986-988.
[10] FREW J E, HILL H A O. Electrochemical Biosensors [J]. Analytical Chemistry, 1987, 59(15): 933A-944A.
[11] ZHANG S X, WANG N, YU H J, et al. Covalent Attachment of Glucose Oxidase to an Au Electrode Modified with Gold Nanoparticles for Use as Glucose Biosensor [J]. Bioelectrochemistry, 2005, 67(1): 15-22.
[12] ALONSO B, ARMADA P G, LOSADA J, et al. Amperometric Enzyme Electrodes for Aerobic and Anaerobic Glucose Monitoring Prepared by Glucose Oxidase Immobilized in Mixed Ferrocene-Cobaltocenium Dendrimers [J]. Biosensors and Bioelectronics, 2004, 19(12): 1617-1625.
[13] BAI Y, SUN Y Y, SUN C Q. Pt-Pb Nanowire Array Electrode for Enzyme-Free Glucose Detection [J]. Biosensors and Bioelectronics, 2008, 24(4): 579-585.
[14] WANG J J C R. Electrochemical Glucose Biosensors [J]. Chemical Reviews, 2008, 108(2): 814-825.
[15] ALBISSER A M, LEIBEL B S, EWART T G, et al. Clinical Control of Diabetes by Artificial Pancreas [J]. Diabetes, 1974, 23(5): 397-404.
[16] SHICHIRI M, KAWAMORI R, YAMASAKI Y, et al. Wearable Artificial Endocrine Pancreas with Needle-Type Glucose Sensor [J]. The Lancet, 1982, 320(8308): 1129-1131.
[17] BINDRA D S, ZHANG Y N, WILSON G S, et al. Design and Invitro Studies of a Needle-Type Glucose Sensor for Subcutaneous Monitoring [J]. Analytical Chemistry, 1991, 63(17): 1692-1696.
[18] GOUGH D A, KUMOSA L S, ROUTH T L, et al. Function of an Implanted Tissue Glucose Sensor for More than 1 Year in Animals [J]. Science Translational Medicine, 2010, 2(42): 42ra53-42ra53.
[19] MIRZAJANI H, ABBASIASL T, MIRLOU F, et al. An Ultra-Compact and Wireless Tag for Battery-Free Sweat Glucose Monitoring [J]. Biosensors and Bioelectronics, 2022, 213, 114450.
[20] LIU Y R, WU Z L, KOLLIPARA P S, et al. Label-Free Ultrasensitive Detection of Abnormal Chiral Metabolites in Diabetes [J]. ACS Nano, 2021, 15(4): 6448-6456.
[21] OHAYON D, NIKIFORIDIS G, SAVVA A, et al. Biofuel Powered Glucose Detection in Bodily Fluids with an N-Type Conjugated Polymer [J]. Nature Materials, 2020, 19(4): 456-463.
[22] KIM S K, LEE G H, JEON C, et al. Bimetallic Nanocatalysts Immobilized in Nanoporous Hydrogels for Long-Term Robust Continuous Glucose Monitoring of Smart Contact Lens [J]. Advanced Materials, 2022, 34(18): 2110536.
[23] LEE H, CHOI T K, LEE Y B, et al. A Graphene-Based Electrochemical Device with Thermoresponsive Microneedles for Diabetes Monitoring and Therapy [J]. Nature Nanotechnology, 2016, 11(6): 566-572.
[24] GAO W, EMAMINEJAD S, NYEIN H Y Y, et al. Fully Integrated Wearable Sensor Arrays for Multiplexed in Situ Perspiration Analysis [J]. Nature, 2016, 529(7587): 509-514.
[25] PARK J, KIM J, KIM S Y, et al. Soft, Smart Contact Lenses with Integrations of Wireless Circuits, Glucose Sensors, and Displays [J]. Science Advances, 2018, 4(1): eaap9841.
[26] PU Z H, ZHANG X G, YU H X, et al. A Thermal Activated and Differential Self-Calibrated Flexible Epidermal Biomicrofluidic Device for Wearable Accurate Blood Glucose Monitoring [J]. Science Advances, 2021, 7(5): eabd0199.
[27] CHENG Y X, GONG X, YANG J, et al. A Touch-Actuated Glucose Sensor Fully Integrated with Microneedle Array and Reverse Iontophoresis for Diabetes Monitoring [J]. Biosensors and Bioelectronics, 2022, 203: 114026.
[28] LI X L, HUANG X S, MO J S, et al. A Fully Integrated Closed-Loop System Based on Mesoporous Microneedles-Iontophoresis for Diabetes Treatment [J]. Advanced Science, 2021, 8(16): 2100827.
[29] STEINER M S, DUERKOP A, WOLFBEIS O S. Optical Methods for Sensing Glucose [J]. Chemical Society Reviews, 2011, 40(9): 4805-4839.
[30] JO S M, KIM J, LEE J E, et al. Multimodal Enzyme-Carrying Suprastructures for Rapid and Sensitive Biocatalytic Cascade Reactions [J]. Advanced Science, 2022, 9(10): 2104884.
[31] CAI J Y, LUO W, PAN J J, et al. Glucose-Sensing Photonic Nanochain Probes with Color Change in Seconds [J]. Advanced Science, 2022, 9(9): 2105239.
[32] PIRNSTILL C W, MALIK B H, GRESHAM V C, et al. In Vivo Glucose Monitoring Using Dual-Wavelength Polarimetry to Overcome Corneal Birefringence in the Presence of Motion [J]. Diabetes Technology & Therapeutics, 2012, 14(9): 819-827.
[33] DE PRETTO L R, YOSHIMURA T M, RIBEIRO M S, et al. Optical Coherence Tomography for blood glucose monitoring through signal attenuation [C]. Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XX. SPIE, 2016, 9697: 277-285.
[34] LIAKAT S, BORS K A, XU L, et al. Noninvasive In Vivo Glucose Sensing on Human Subjects using Mid-Infrared Light [J]. Biomedical Optics Express, 2014, 5(7): 2397-2404.
[35] SHIH W C, BECHTEL K L, REBEC M V. Noninvasive Glucose Sensing by Transcutaneous Raman Spectroscopy [J]. Journal of Biomedical Optics, 2015, 20(5): 051036.
[36] PANDEY R, PAIDI S K, VALDEZ T A, et al. Noninvasive Monitoring of Blood Glucose with Raman Spectroscopy [J]. Accounts of Chemical Research, 2017, 50(2): 264-272.
[37] REN Z, LIU G D, HUANG Z. Determination of Glucose Concentration Based on Pulsed Laser Induced Photoacoustic Technique and Least Square Fitting Algorithm [C]. 2015 International Conference on Optical Instruments and Technology: Optoelectronic Devices and Optical Signal Processing. SPIE, 2015, 9619: 137-144.
[38] 郭帅,苏杭,黄星灿,等. 光学无创血糖浓度检测方法的研究进展[J]. 中国光学,2019,12(06): 1235-48.
[39] SHIBATA H, HEO Y J, OKITSU T, et al. Injectable Hydrogel Microbeads for Fluorescence-Based In Vivo Continuous Glucose Monitoring [J]. Proceedings of the National Academy of Sciences, 2010, 107(42): 17894-17898
[40] WANG H, YI J H, YU Y Y, et al. NIR Upconversion Fluorescence Glucose Sensing and Glucose-Responsive Insulin Release of Carbon Dot-Immobilized Hybrid Microgels at Physiological pH [J]. Nanoscale, 2017, 9(2): 509-516.
[41] YANG X F, ZHOU Z D, XIAO D, et al. A Fluorescent Glucose Biosensor Based on Immobilized Glucose Oxidase on Bamboo Inner Shell Membrane [J]. Biosensors and Bioelectronics, 2006, 21(8): 1613-1620.
[42] WU X J, CHOI M M F. An Optical Glucose Biosensor Based on Entrapped-Glucose Oxidase in Silicate Xerogel Hybridised with Hydroxyethyl Carboxymethyl Cellulose [J]. Analytica Chimica Acta, 2004, 514(2): 219-226.
[43] WOLFBEIS O S, OEHME I, PAPKOVSKAYA N, et al. Sol-Gel Based Glucose Biosensors Employing Optical Oxygen Transducers, and A Method for Compensating for Variable Oxygen Background [J]. Biosensors and Bioelectronics, 2000, 15(1-2): 69-76.
[44] WU S, KONG X J, CEN Y, et al. Fabrication of A LRET-Based Upconverting Hybrid Nanocomposite for Turn-On Sensing of H2O2 and Glucose [J]. Nanoscale, 2016, 8(16): 8939-8946.
[45] LI N, THAN A, WANG X W, et al. Ultrasensitive Profiling of Metabolites Using Tyramine-Functionalized Graphene Quantum Dots [J]. ACS Nano, 2016, 10(3): 3622-3629.
[46] WEI J F, QIANG L, REN J, et al. Fluorescence Turn-Off Detection of Hydrogen Peroxide and Glucose Directly Using Carbon Nanodots as Probes [J]. Analytical Methods, 2014, 6(6): 1922-1927.
[47] SHAN X Y, CHAI L J, MA J J, et al. B-doped Carbon Quantum Dots as A Sensitive Fluorescence Probe for Hydrogen Peroxide and Glucose Detection [J]. Analyst, 2014, 139(10): 2322-2325.
[48] CHENG X, SUN L H, LI R F, et al. Organic Polymer Dot-Based Fluorometric Determination of the Activity of Horseradish Peroxidase and of the Concentrations of Glucose and the Insecticidal Protein Toxin Cry1Ab/Ac [J]. Microchimica Acta, 2019, 186(11): 1-7.
[49] MA J L, YIN B C, WU X, et al. Simple and Cost-Effective Glucose Detection Based on Carbon Nanodots Supported on Silver Nanoparticles [J]. Analytical Chemistry, 2017, 89(2): 1323-1328.
[50] MA H, LIU X Y, WANG X D, et al. Sensitive Fluorescent Light-Up Probe for Enzymatic Determination of Glucose Using Carbon Dots Modified with MnO2 Nanosheets [J]. Microchimica Acta, 2017, 184(1): 177-185.
[51] GONZALES W V, MOBASHSHER A T, ABBOSH A. The Progress of Glucose Monitoring—A Review of Invasive to Minimally and Non-Invasive Techniques, Devices and Sensors [J]. Sensors, 2019, 19(4): 800.
[52] SAHA S, CANO-GARCIA H, SOTIRIOU L, et al. A Glucose Sensing System Based on Transmission Measurements at Millimetre Waves Using Micro Strip Patch Antennas [J]. Scientific Reports, 2017(7), 6855.
[53] HANNA J, BTEICH M, TAWK Y, et al. Noninvasive, Wearable, and Tunable Electromagnetic Multisensing System for Continuous Glucose Monitoring, Mimicking Vasculature Anatomy [J]. Science Advances, 2020, 6(24): eaba5320.
[54] WANG Z R, MASCARENHAS C, JIA X F. Positron Emission Tomography After Ischemic Brain Injury: Current Challenges and Future Developments [J]. Translational Stroke Research, 2020, 11(4): 628-642.
[55] KRAUSE B J, SCHWARZENBöCK S, SOUVATZOGLOU M. FDG PET and PET/CT[J]. Molecular Imaging in Oncology, 2013: 351-369.
[56] FOWLER J S, IDO T. Initial and Subsequent Approach for the Synthesis of (18)FDG [C]. Seminars in Nuclear Medicine. WB Saunders, 2002, 32(1): 6-12.
[57] DI CHIRO G, OLDFIELD E, WRIGHT D C, et al. Cerebral Necrosis After Radiotherapy and/or Intraarterial Chemotherapy for Brain Tumors: PET and Neuropathologic Studies [J]. American Journal of Roentgenology, 1988, 150(1): 189-197.
[58] CHEN W. Clinical Applications of PET in Brain Tumors [J]. Journal of Nuclear Medicine, 2007, 48(9): 1468-1481.
[59] WONG T Z, VAN DER WESTHUIZEN G J, COLEMAN R E. Positron Emission Tomography Imaging of Brain Tumors [J]. Neuroimaging Clinics, 2002, 12(4): 615-626.
[60] BENVENISTE H, HUTTEMEIER P C. Microdialysis-Theory and Application [J]. Prog Neurobiol, 1990, 35(3): 195-215.
[61] KRISHNAPPA I K, CONTANT C F, ROBERTSON C S. Regional Changes in Cerebral Extracellular Glucose and Lactate Concentrations Following Severe Cortical Impact Injury and Secondary Ischemia in Rats [J]. Journal of Neurotrauma, 1999, 16(3): 213-224.
[62] CHEFER V I, THOMPSON A C, ZAPATA A, et al. Overview of Brain Microdialysis[J]. Current Protocols in Neuroscience, 2009, 47(1): 7.1.1-7.1.28.
[63] WALKER-SAMUEL S, RAMASAWMY R, TORREALDEA F, et al. In Vivo Imaging of Glucose Uptake and Metabolism in Tumors [J]. Nature Medicine, 2013, 19(8): 1067-1072.
[64] HUANG J P, VAN ZIJL P C M, HAN X Q, et al. Altered D-glucose in Brain Parenchyma and Cerebrospinal Fluid of Early Alzheimer's Disease Detected by Dynamic Glucose-Enhanced MRI [J]. Science Advances, 2020, 6(20): eaba3884.
[65] COX B L, MACKIE T R, ELICEIRI K W, et al. The Sweet Spot: FDG and Other 2-Carbon Glucose Analogs for Multi-Modal Metabolic Imaging of Tumor Metabolism [J]. American Journal of Nuclear Medicine and Molecular Imaging, 2015, 5(1): 1.
[66] YOSHIOKA K, SAITO M, OH K B, et al. Intracellular Fate of 2-NBDG, a Fluorescent Probe for Glucose Uptake Activity, in Escherichia Coli Cells [J]. Bioscience, Biotechnology, and Biochemistry, 1996, 60(11): 1899-1901.
[67] CHENG Z, LEVI J, XIONG Z, et al. Near-Infrared Fluorescent Deoxyglucose Analogue for Tumor Optical Imaging in Cell Culture and Living Mice [J]. Bioconjugate Chemistry, 2006, 17(3): 662-669.
[68] GAROFALAKIS A, DUBOIS A, THéZé B, et al. Fusion of
[18F]FDG PET with Fluorescence Diffuse Optical Tomography to Improve Validation of Probes and Tumor Imaging [J]. Molecular Imaging and Biology, 2013, 15(3): 316-325.
[69] LUNDGAARD I, LI B M, XIE L L, et al. Direct Neuronal Glucose Uptake Heralds Activity-Dependent Increases in Cerebral Metabolism [J]. Nature Communications, 2015, 6(1): 1-12.
[70] KOVAR J L, VOLCHECK W, SEVICK-MURACA E, et al. Characterization and Performance of a Near-Infrared 2-Deoxyglucose Optical Imaging Agent for Mouse Cancer Models [J]. Analytical Biochemistry, 2009, 384(2): 254-262.
[71] MARIC T, MIKHAYLOV G, KHODAKIVSKYI P, et al. Bioluminescent-Based Imaging and Quantification of Glucose Uptake In Vivo [J]. Nature Methods, 2019, 16(6): 526-532.
[72] CHEN D D, WU I C, LIU Z H, et al. Semiconducting Polymer Dots with Bright Narrow-Band Emission at 800 nm for Biological Applications [J]. Chemical Science, 2017, 8(5): 3390-3398.
[73] LIU M H, ZHANG Z, YANG Y C, et al. Polymethine‐Based Semiconducting Polymer Dots with Narrow‐Band Emission and Absorption/Emission Maxima at NIR‐II for Bioimaging [J]. Angewandte Chemie, International Edition. 2021, 60(2): 983-989.
[74] LIU Y, LIU J F, CHEN D D, et al. Fluorination Enhances NIR-II Fluorescence of Polymer Dots for Quantitative Brain Tumor Imaging [J]. Angewandte Chemie, International Edition, 2020, 59(47): 21049-21057.
[75] ZHANG Z, FANG X F, LIU Z H, et al. Semiconducting Polymer Dots with Dual-Enhanced NIR-IIa Fluorescence for Through-Skull Mouse-Brain Imaging [J]. Angewandte Chemie, International Edition, 2020, 59(9): 3691-3698.
[76] MA Y, XU L, YIN B, et al. Ratiometric Semiconducting Polymer Nanoparticle for Reliable Photoacoustic Imaging of Pneumonia-Induced Vulnerable Atherosclerotic Plaque In Vivo [J]. Nano Letters, 2021, 21(10): 4484-4493.
[77] ZENG W, WU L, SUN Y, et al. Ratiometric Imaging of MMP‐2 Activity Facilitates Tumor Detection Using Activatable Near‐Infrared Fluorescent Semiconducting Polymer Nanoparticles [J]. Small, 2021, 17(36): 2101924.
[78] LI Y X, SU S P, YANG C H, et al. Molecular Design of Ultrabright Semiconducting Polymer Dots with High NIR-II Fluorescence for 3D Tumor Mapping [J]. Advanced Healthcare Materials, 2021, 2100993.
[79] GUO B, CHEN J Q, CHEN N B, et al. High-Resolution 3D NIR-II Photoacoustic Imaging of Cerebral and Tumor Vasculatures Using Conjugated Polymer Nanoparticles as Contrast Agent [J]. Advanced Materials, 2019, 31(25): 1808355
[80] CHEN H B, YU J B, MEN X X, et al. Reversible Ratiometric NADH Sensing Using Semiconducting Polymer Dots [J]. Angewandte Chemie, International Edition, 2021, 60(21): 12114-12119.
[81] ZHANG Q, HU X X, DAI X M, et al. General Strategy to Achieve Color-Tunable Ratiometric Two-Photon Integrated Single Semiconducting Polymer Dot for Imaging Hypochlorous Acid [J]. ACS Nano, 2021, 15(8): 13633-13645.
[82] SUN J Y, LING P H, GAO F. A Mitochondria-Targeted Ratiometric Biosensor for pH Monitoring and Imaging in Living Cells with Congo-Red-Functionalized Dual-Emission Semiconducting Polymer Dots [J]. Analytical Chemistry, 2017, 89(21): 11703-11710.
[83] WANG Z, HE X W, YONG T Y, et al. Multicolor Tunable Polymeric Nanoparticle from the Tetraphenylethylene Cage for Temperature Sensing in Living Cells [J]. Journal of the American Chemical Society, 2020, 142(1): 512-519.
[84] QI W Z, LI T T, ZHANG C, et al. Light-Controlled Precise Delivery of NIR-Responsive Semiconducting Polymer Nanoparticles with Promoted Vascular Permeability [J]. Advanced Functional Materials, 2021, 10(19): 2100569
[85] ZHEN X, PU K Y, JIANG X Q. Photoacoustic Imaging and Photothermal Therapy of Semiconducting Polymer Nanoparticles: Signal Amplification and Second Near-Infrared Construction [J]. Small, 2021, 17(6): 2004723
[86] LI J C, YU X R, JIANG Y Y, et al. Second Near-Infrared Photothermal Semiconducting Polymer Nanoadjuvant for Enhanced Cancer Immunotherapy [J]. Advanced Materials, 2021, 33(4): 2003458
[87] KANG T, NI J-S, LI T, et al. Efficient and Precise Delivery of MicroRNA by Photoacoustic Force Generated from Semiconducting Polymer-Based Nanocarriers [J]. Biomaterials, 2021, 275, 120907.
[88] YIN C, ZHANG H, SUN B, et al. Remarkable Suppression of Vibrational Relaxation in Organic Semiconducting Polymers by Introducing A Weak Electron Donor for Improved NIR-II Phototheranostics [J]. Advanced Functional Materials, 2021, 31(47): 2106575.
[89] WANG X, WU M, LI H Z, et al. Enhancing Penetration Ability of Semiconducting Polymer Nanoparticles for Sonodynamic Therapy of Large Solid Tumor [J]. Advanced Science, 2022, 9(6): 2104125.
[90] LANDFESTER K. Miniemulsion Polymerization and the Structure of Polymer and Hybrid Nanoparticles [J]. Angewandte Chemie International Edition, 2009, 48(25): 4488-4507.
[91] TUNCEL D, DEMIR H V. Conjugated Polymer Nanoparticles [J]. Nanoscale, 2010, 2(4): 484-494.
[92] WU C F, CHIU D T. Highly Fluorescent Semiconducting Polymer Dots for Biology and Medicine [J]. Angewandte Chemie International Edition, 2013, 52(11): 3086-3109.
[93] WU C F, SZYMANSKI C, MCNEILL J. Preparation and Encapsulation of Highly Fluorescent Conjugated Polymer Nanoparticles [J]. Langmuir, 2006, 22(7): 2956-2960.
[94] WU C, HANSEN S J, HOU Q, et al. Design of Highly Emissive Polymer Dot Bioconjugates for In Vivo Tumor Targeting [J]. Angewandte Chemie International Edition, 2011, 123(15): 3492-3496.
[95] YE F, WU C, JIN Y, et al. A Compact and Highly Fluorescent Orange-Emitting Polymer Dot for Specific Subcellular Imaging [J]. Chemical Communications, 2012, 48(12): 1778-1780.
[96] SUN K, TANG Y, LI Q, et al. In Vivo Dynamic Monitoring of Small Molecules with Implantable Polymer-Dot Transducer [J]. ACS Nano, 2016, 10(7): 6769-6781.
[97] SUN K, YANG Y K, ZHOU H, et al. Ultrabright Polymer-Dot Transducer Enabled Wireless Glucose Monitoring via A Smartphone [J]. ACS Nano, 2018, 12(6): 5176-5184.
[98] SUN K, DING Z Y, ZHANG J C, et al. Enhancing the Long-Term Stability of A Polymer Dot Glucose Transducer by Using an Enzymatic Cascade Reaction System [J]. Advanced Healthcare Materials, 2021, 10(4): 2001019.
[99] SUN K, LIU S Y, LIU J, et al. Improving the Accuracy of Pdot-Based Continuous Glucose Monitoring by Using External Ratiometric Calibration [J]. Analytical Chemistry, 2021, 93(4): 2359-2366.
[100] LIU J, FANG X F, ZHANG Z, et al. Long-Term In Vivo Glucose Monitoring by Polymer-Dot Transducer in An Injectable Hydrogel Implant [J]. Analytical Chemistry, 2022, 94(4): 2195-2203.
[101] ZIERLER K. Whole body glucose metabolism [J]. American Journal of Physiology-Endocrinology and Metabolism, 1999, 276(3): E409-E426.
[102] HAY N J N R C. Reprogramming Glucose Metabolism in Cancer: Can It be Exploited for Cancer Therapy? [J]. Nature Reviews Cancer, 2016, 16(10): 635-649.
[103] MOMCILOVIC M, SHACKELFORD D B. Imaging Cancer Metabolism [J]. Biomolecules & Therapeutics, 2018, 26(1): 81.
[104] SZABLEWSKI L. Glucose Transporters in Brain: in Health and in Alzheimer’s Disease [J]. Journal of Alzheimer's Disease, 2017, 55(4): 1307-1320.
[105] WILDING J P H. The Role of the Kidneys in Glucose Homeostasis in Type 2 Diabetes: Clinical Implications and Therapeutic Significance Through Sodium Glucose Co-Transporter 2 Inhibitors [J]. Metabolism, 2014, 63(10): 1228-1237.
[106] KELLOFF G J, HOFFMAN J M, JOHNSON B, et al. Progress and Promise of FDG-PET Imaging for Cancer Patient Management and Oncologic Drug Development [J]. Clinical Cancer Research, 2005, 11(8): 2785-2808.
[107] BEN-HAIM S, ELL P. 18F-FDG PET and PET/CT in the Evaluation of Cancer Treatment Response [J]. Journal of Nuclear Medicine, 2009, 50(1): 88-99.
[108] NORDBERG A, RINNE J O, KADIR A, et al. The Use of PET in Alzheimer Disease [J]. Nature Reviews Neurology, 2010, 6(2): 78-87.
[109] ROSLIN M, HENRIKSSON R, BERGSTRöM P, et al. Baseline Levels of Glucose Metabolites, Glutamate and Glycerol in Malignant Glioma Assessed by Stereotactic Microdialysis [J]. Journal of Neuro-Oncology, 2003, 61(2): 151-160.
[110] NASRALLAH F A, PAGèS G, KUCHEL P W, et al. Imaging Brain Deoxyglucose Uptake and Metabolism by GlucoCEST MRI [J]. Journal of Cerebral Blood Flow & Metabolism, 2013, 33(8): 1270-1278.
[111] JIN T, MEHRENS H, WANG P, et al. Glucose Metabolism-Weighted Imaging with Chemical Exchange-Sensitive MRI of 2-Deoxyglucose (2DG) in Brain: Sensitivity and Biological Sources [J]. Neuroimage, 2016, 143: 82-90.
[112] HEO Y J, SHIBATA H, OKITSU T, et al. Long-Term In Vivo Glucose Monitoring Using Fluorescent Hydrogel Fibers [J]. Proceedings of the National Academy of Sciences, 2011, 108(33): 13399-13403.
[113] MA J L, YIN B C, WU X, et al. Simple and Cost-Effective Glucose Detection Based on Carbon Nanodots Supported on Silver Nanoparticles [J]. Analytical Chemistry, 2017, 89(2): 1323-1328.
[114] AKKAYA I, SELIM E, ALTINTAS M, et al. Power Spectral Density-Based Nearinfrared Sub-Band Detection for Noninvasive Blood Glucose Prediction in Both In-Vitro and In-Vivo Studies [J]. Journal of Innovative Optical Health Sciences, 2018, 11(06): 1850035.
[115] FLAVAHAN W A, WU Q, HITOMI M, et al. Brain Tumor Initiating Cells Adapt to Restricted Nutrition Through Preferential Glucose Uptake [J]. Nature Neuroscience, 2013, 16(10): 1373-1382.
[116] CUNNANE S C, TRUSHINA E, MORLAND C, et al. Brain Energy Rescue: an Emerging Therapeutic Concept for Neurodegenerative Disorders of Ageing [J]. Nature Reviews Drug Discovery, 2020, 19(9): 609-633.
[117] TU T W, IBRAHIM W G, JIKARIA N, et al. On the Detection of Cerebral Metabolic Depression in Experimental Traumatic Brain Injury Using Chemical Exchange Saturation Transfer (CEST)-Weighted MRI [J]. Scientific Reports, 2018, 8(1): 1-12.
[118] LOZANO A, FRANCHI F, SEASTRES R J, et al. Glucose and Lactate Concentrations in Cerebrospinal Fluid After Traumatic Brain Injury [J]. Journal of Neurosurgical Anesthesiology, 2020, 32(2): 162-169.
[119] GRECO T, VESPA P M, PRINS M L. Alternative Substrate Metabolism Depends on Cerebral Metabolic State Following Traumatic Brain Injury [J]. Experimental Neurology, 2020, 329: 113289.
[120] FRYKHOLM P, HILLERED L, LANGSTROM B, et al. Relationship Between Cerebral Blood Flow and Oxygen Metabolism, and Extracellular Glucose and Lactate Concentrations During Middle Cerebral Artery Occlusion and Reperfusion: A Microdialysis and Positron Emission Tomography Study in Nonhuman Primates [J]. Journal of Neurosurgery, 2005, 102(6): 1076-1084.
[121] WU C F, BULL B, CHRISTENSEN K, et al. Ratiometric Single-Nanoparticle Oxygen Sensors for Biological Imaging [J]. Angewandte Chemie International Edition, 2009, 121(15): 2779-2783.
[122] TAO Z, RAFFEL R A, SOUID A-K, GOODISMAN J. Kinetic Studies on Enzyme-Catalyzed Reactions: Oxidation of Glucose, Decomposition of Hydrogen Peroxide and Their Combination [J]. 2009, 96(7): 2977-2988.
[123] WU L, HUANG C, EMERY B P, et al. Förster Resonance Energy Transfer (FRET)-Based Small-Molecule Sensors and Imaging Agents [J]. Chemical Society Reviews, 2020, 49(15): 5110-5139.
[124] SHEN Y L, LIFANTE J, ZABALA-GUTIERREZ I, et al. Reliable and Remote Monitoring of Absolute Temperature during Liver Inflammation via Luminescence-Lifetime-Based Nanothermometry [J]. Advanced Materials, 2022, 34(7): 2107764.
[125] SHEN Y L, LIFANTE J, FERNANDEZ N, et al. In Vivo Spectral Distortions of Infrared Luminescent Nanothermometers Compromise Their Reliability [J]. ACS Nano, 2020, 14(4): 4122-4133.
[126] CARREAU A, HAFNY‐RAHBI B E, MATEJUK A, et al. Why Is the Partial Oxygen Pressure of Human Tissues A Crucial Parameter? Small Molecules and Hypoxia [J]. Journal of Cellular and Molecular Medicine, 2011, 15(6): 1239-1253.
[127] MIAN Z, HERMAYER K L, JENKINS A. Continuous Glucose Monitoring: Review of An Innovation In Diabetes Management [J]. 2019, 358(5): 332-339.
[128] HEIDEN M G V, CANTLEY L C, THOMPSON C B. Understanding the Warburg Effect: The Metabolic Requirements of Cell Proliferation [J]. Science, 2009, 324(5930): 1029-1033.
[129] BONSU B K, HARPER M B. Differentiating Acute Bacterial Meningitis from Acute Viral Meningitis among Children with Cerebrospinal Fluid Pleocytosis: A Multivariable Regression Model [J]. The Pediatric Infectious Disease Journal, 2004, 23(6): 511-517.
[130] SPANOS A, HARRELL F E, DURACK D T. Differential Diagnosis of Acute Meningitis: An Analysis of the Predictive Value of Initial Observations [J]. Jama, 1989, 262(19): 2700-2707.
[131] PAPPAS C, KLINEDINST B S, LE S, et al. CSF Glucose Tracks Regional Tau Progression Based on Alzheimer's Disease Risk Factors [J]. Alzheimer's & Dementia: Translational Research & Clinical Interventions, 2020, 6(1): e12080.
[132] PASTUSZCZAK M, WOJAS-PELC A, JAWOREK A. Association of CSF Glucose Concentration with Neurosyphilis Diagnosis [J]. Open Medicine, 2013, 8(1): 48-51.
[133] WATANABE S, KAMIYAMA J, CHIGASAKI H, et al. Polyol Content of Cerebrospinal-Fluid in Brain-Tumor Patients [J]. Journal of Neurosurgery, 1989, 70(2): 183-189.
[134] NIGROVIC L E, KIMIA A A, SHAH S S, et al. Relationship Between Cerebrospinal Fluid Glucose and Serum Glucose [J]. New England Journal of Medicine, 2012, 366(6): 576-578.
[135] KLEPPER J, VOIT T. Facilitated Glucose Transporter Protein Type 1 (GLUT1) Deficiency Syndrome: Impaired Glucose Transport into Brain–A Review [J]. European Journal of Pediatrics, 2002, 161(6): 295-304.
[136] SEEHUSEN D A, REEVES M, FOMIN D. Cerebrospinal Fluid Analysis [J]. American Family Physician, 2003, 68(6): 1103-1108.
[137] VERBEEK M M, LEEN W G, WILLEMSEN M A, et al. Hourly Analysis of Cerebrospinal Fluid Glucose Shows Large Diurnal Fluctuations [J]. Journal of Cerebral Blood Flow & Metabolism, 2016, 36(5): 899-902.
[138] CHO N H, SHAW J E, KARURANGA S, et al. IDF Diabetes Atlas: Global Estimates of Diabetes Prevalence for 2017 and Projections for 2045 [J]. Diabetes Research and Clinical Practice, 2018, 138: 271-281.
[139] GROSS T M, BODE B W, EINHORN D, et al. Performance Evaluation of the MiniMed® Continuous Glucose Monitoring System during Patient Home Use [J]. Diabetes Technology & Therapeutics, 2000, 2(1): 49-56.
[140] MIAN Z, HERMAYER K L, JENKINS A. Continuous Glucose Monitoring: Review of An Innovation in Diabetes Management [J]. The American Journal of the Medical Sciences, 2019, 358(5): 332-339.
[141] RODBARD D. Continuous Glucose Monitoring: A Review of Successes, Challenges, and Opportunities [J]. Diabetes Technology & Therapeutics, 2016, 18(S2): S2-3-S2-13.
[142] JIN X, LI G, XU T, et al. Fully Integrated Flexible Biosensor for Wearable Continuous Glucose Monitoring [J]. Biosensors and Bioelectronics, 2022, 196: 113760.
[143] TEYMOURIAN H, BARFIDOKHT A, WANG J. Electrochemical Glucose Sensors in Diabetes Management: An Updated Review (2010-2020) [J]. Chemical Society Reviews, 2020, 49(21): 7671-7709.
[144] JERNELV I L, MILENKO K, FUGLERUD S S, et al. A Review of Optical Methods for Continuous Glucose Monitoring [J]. Applied Spectroscopy Reviews, 2019, 54(7): 543-572.
[145] CHEN L, HWANG E, ZHANG J. Fluorescent Nanobiosensors for Sensing Glucose [J]. Sensors, 2018, 18(5): 1440.
[146] FREEMAN R, BAHSHI L, FINDER T, et al. Competitive Analysis of Saccharides or Dopamine by Boronic Acid-Functionalized CdSe-ZnS Quantum Dots [J]. Chemical Communications, 2009, (7): 764-766.
[147] YETISEN A K, JIANG N, FALLAHI A, et al. Glucose-Sensitive Hydrogel Optical Fibers Functionalized with Phenylboronic Acid [J]. Advanced Materials, 2017, 29(15): 1606380.
[148] SAWAYAMA J, TAKEUCHI S. Long-Term Continuous Glucose Monitoring Using A Fluorescence-Based Biocompatible Hydrogel Glucose Sensor [J]. Advanced Healthcare Materials, 2021, 10(3): 2001286.
[149] FANG X F, JU B, LIU Z H, et al. Compact Conjugated Polymer Dots with Covalently Incorporated Metalloporphyrins for Hypoxia Bioimaging [J]. ChemBioChem, 2019, 20(4): 521-525.
[150] HENNEBICQ E, POURTOIS G, SCHOLES G D, et al. Exciton Migration in Rigid-Rod Conjugated Polymers: An Improved Förster Model [J]. Journal of the American Chemical Society, 2005, 127(13): 4744-4762.
[151] CHANG K, TANG Y, FANG X, et al. Incorporation of Porphyrin to π-Conjugated Backbone for Polymer-Dot-Sensitized Photodynamic Therapy [J]. Biomacromolecules, 2016, 17(6): 2128-2136.
[152] DEFRONZO R A, FERRANNINI E, GROOP L, et al. Type 2 Diabetes Mellitus [J]. Nature Reviews Disease Primers, 2015, 1(1): 1-22.
[153] WOLPERT H A. Continuous Glucose Monitoring: Coming of Age [J]. New England Journal of Medicine, 2010, 363(4): 383-384.
[154] KLONOFF D C, AHN D, DRINCIC A, et al. Continuous Glucose Monitoring: A Review of the Technology and Clinical Use [J]. Diabetes Research and Clinical Practice, 2017, 133: 178-192.
[155] HELLER A, FELDMAN B. Electrochemical Glucose Sensors and Their Applications in Diabetes Management [J]. Chemical Reviews, 2008, 108(7): 2482-2505.
[156] KLONOFF D C. Overview of Fluorescence Glucose Sensing: A Technology with a Bright Future [J]. Journal of Diabetes Science and Technology, 2012, 6(6): 1242-1250.
[157] GIORGIO M, TRINEI M, MIGLIACCIO E, et al. Hydrogen Peroxide: A Metabolic by-Product or A Common Mediator of Ageing Signals? [J]. Nature Reviews Molecular Cell Biology, 2007, 8(9): 722-728.
[158] GOUGH D, COTTER T J. Hydrogen Peroxide: A Jekyll and Hyde Signalling Molecule [J]. Cell Death & Disease, 2011, 2(10): e213-e213.
[159] VALKO M, LEIBFRITZ D, MONCOL J, et al. Free Radicals and Antioxidants in Normal Physiological Functions and Human Disease [J]. The International Journal of Biochemistry & Cell Biology, 2007, 39(1): 44-84.
[160] WEN M, OUYANG J, WEI C W, et al. Artificial Enzyme Catalyzed Cascade Reactions: Antitumor Immunotherapy Reinforced by NIR-II Light [J]. Angewandte Chemie, International Edition, 2019, 58(48): 17425-17432.
[161] GRIMSDALE A C, LEOK CHAN K, MARTIN R E, et al. Synthesis of Light-Emitting Conjugated Polymers for Applications in Electroluminescent Devices [J]. Chemical Reviews, 2009, 109(3): 897-1091.
[162] DANE E L, KING S B, SWAGER T M. Conjugated Polymers that Respond to Oxidation with Increased Emission [J]. Journal of the American Chemical Society, 2010, 132(22): 7758-7768.
[163] SCURLOCK R D, WANG B, OGILBY P R, et al. Singlet Oxygen as A Reactive Intermediate in the Photodegradation of An Electroluminescent Polymer [J]. Journal of the American Chemical Society, 1995, 117(41): 10194-10202.
[164] DAM N, SCURLOCK R D, WANG B J, et al. Singlet Oxygen as A Reactive Intermediate in the Photodegradation of Phenylenevinylene Oligomers [J]. Chemistry of Materials, 1999, 11(5): 1302-1305.
[165] ROMANER L, POGANTSCH A, SCANDIUCCI DE FREITAS P, et al. The Origin of Green Emission in Polyfluorene‐based Conjugated Polymers: On‐chain Defect Fluorescence [J]. Advanced Functional Materials, 2003, 13(8): 597-601.
[166] CHO S Y, GRIMSDALE A C, JONES D J, et al. Polyfluorenes Without Monoalkylfluorene Defects [J]. Journal of the American Chemical Society, 2007, 129(39): 11910-11911.
[167] MOORE T C. Factors Influencing Enzyme Activity [M]. Research Experiences in Plant Physiology. Springer, Berlin, Heidelberg, 1974: 33-49.
[168] BAO J, FURUMOTO K, YOSHIMOTO M, et al. Competitive Inhibition by Hydrogen Peroxide Produced in Glucose Oxidation Catalyzed by Glucose Oxidase [J]. Biochemical Engineering Journal, 2003, 13(1): 69-72.
修改评论