中文版 | English
题名

NDD: A 3D Point Cloud Descriptor Based on Normal Distribution for Loop Closure Detection

作者
DOI
发表日期
2022
ISSN
2153-0858
ISBN
978-1-6654-7928-8
会议录名称
页码
1328-1335
会议日期
23-27 Oct. 2022
会议地点
Kyoto, Japan
摘要
Loop closure detection is a key technology for long-term robot navigation in complex environments. In this paper, we present a global descriptor, named Normal Distribution Descriptor (NDD), for 3D point cloud loop closure detection. The descriptor encodes both the probability density score and entropy of a point cloud as the descriptor. We also propose a fast rotation alignment process and use correlation coefficient as the similarity between descriptors. Experimental results show that our approach outperforms the state-of-the-art point cloud descriptors in both accuracy and efficency. The source code is available and can be integrated into existing LiDAR odometry and mapping (LOAM) systems.
关键词
学校署名
其他
相关链接[IEEE记录]
来源库
IEEE
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9981180
引用统计
被引频次[WOS]:5
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/420609
专题工学院_电子与电气工程系
作者单位
1.Ruihao Zhou, Xubin Lin and Yisheng Guan is with the Department of Electromechanical Engineering, Guangdong University of technology, China
2.Department of Electronic and Electrical Engineering, Shenzhen Key Laboratory of Robotics and Computer Vision, Southern University of Science and Technology, China
推荐引用方式
GB/T 7714
Ruihao Zhou,Li He,Hong Zhang,et al. NDD: A 3D Point Cloud Descriptor Based on Normal Distribution for Loop Closure Detection[C],2022:1328-1335.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Ruihao Zhou]的文章
[Li He]的文章
[Hong Zhang]的文章
百度学术
百度学术中相似的文章
[Ruihao Zhou]的文章
[Li He]的文章
[Hong Zhang]的文章
必应学术
必应学术中相似的文章
[Ruihao Zhou]的文章
[Li He]的文章
[Hong Zhang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。