中文版 | English
题名

EEG-based Auditory Attention Detection with Estimated Speech Sources Separated from an Ideal-binary-masking Process

作者
DOI
发表日期
2022
会议名称
14th Annual Summit and Conference of the Asia-Pacific-Signal-and-Information-Processing-Association (APSIPA ASC)
ISSN
2640-009X
ISBN
978-1-6654-8662-0
会议录名称
页码
1545-1549
会议日期
7-10 Nov. 2022
会议地点
Chiang Mai, Thailand
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要
Previous studies showed that auditory attention can be decoded from the corresponding electroencephalography (EEG) signals. Most existing EEG-based auditory attention detection (AAD) methods identify target speech in the competing-speaker scenes by comparing the correlation coefficients between the speech envelope of each clean stream and the speech envelope reconstructed from the EEG signals. The usage of separate speech streams limits the actualization of EEG-based AAD in the realistic environments. The current study aimed to develop and assess an EEG-based AAD method using the estimated speech sources separated from an ideal-binary-masking (IBM) process. Specially, the IBM-based speech processing method was first implemented to separate the speech sources in the competing-speaker scenes. Then the estimated IBM-processed speech sources were used to establish the AAD model and extract the target speech stream. Experimental results demonstrated that the AAD accuracies computed with the estimated IBM-processed speech sources were comparable to those with original clean speech sources over a range of signal-to-masker ratios. These findings indicate that the estimated IBM-processed speech sources provide necessary and sufficient information for the EEG-based AAD methods, which facilitate the extraction of attention-driven target speech streams in noisy environments.
关键词
学校署名
第一
语种
英语
相关链接[IEEE记录]
收录类别
资助项目
Shenzhen Key Laboratory of Robotics Perception and Intelligence[ZDSYS20200810171800001] ; Shenzhen Sustainable Support Program for High-level University[20200925154002001]
WOS研究方向
Computer Science ; Engineering ; Imaging Science & Photographic Technology ; Telecommunications
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Information Systems ; Engineering, Electrical & Electronic ; Imaging Science & Photographic Technology ; Telecommunications
WOS记录号
WOS:000922154500249
来源库
IEEE
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9980112
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/420611
专题南方科技大学
作者单位
Shenzhen Key Laboratory of Robotics Perception and Intelligence, Southern University of Science and Technology, Shenzhen, China
第一作者单位南方科技大学
第一作者的第一单位南方科技大学
推荐引用方式
GB/T 7714
Lei Wang,Fei Chen. EEG-based Auditory Attention Detection with Estimated Speech Sources Separated from an Ideal-binary-masking Process[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2022:1545-1549.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Lei Wang]的文章
[Fei Chen]的文章
百度学术
百度学术中相似的文章
[Lei Wang]的文章
[Fei Chen]的文章
必应学术
必应学术中相似的文章
[Lei Wang]的文章
[Fei Chen]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。