题名 | Visual-tactile Sensing for Real-time Liquid Volume Estimation in Grasping |
作者 | |
DOI | |
发表日期 | 2022
|
会议名称 | IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
|
ISSN | 2153-0858
|
ISBN | 978-1-6654-7928-8
|
会议录名称 | |
页码 | 12542-12549
|
会议日期 | 23-27 Oct. 2022
|
会议地点 | Kyoto, Japan
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | We propose a deep visuo-tactile model for real-time estimation of the liquid inside a deformable container in a proprioceptive way. We fuse two sensory modalities, i.e., the raw visual inputs from the RGB camera and the tactile cues from our specific tactile sensor without any extra sensor calibrations. The robotic system is well controlled and adjusted based on the estimation model in real time. The main contributions and novelties of our work are listed as follows: 1) Explore a proprioceptive way for liquid volume estimation by developing an end-to-end predictive model with multi-modal convolutional networks, which achieve a high precision with an error of similar to 2 ml in the experimental validation. 2) Propose a multi-task learning architecture which comprehensively considers the losses from both classification and regression tasks, and comparatively evaluate the performance of each variant on the collected data and actual robotic platform. 3) Utilize the proprioceptive robotic system to accurately serve and control the requested volume of liquid, which is continuously flowing into a deformable container in real time. 4) Adaptively adjust the grasping plan to achieve more stable grasping and manipulation according to the real-time liquid volume prediction. |
关键词 | |
学校署名 | 其他
|
语种 | 英语
|
相关链接 | [IEEE记录] |
收录类别 | |
WOS研究方向 | Automation & Control Systems
; Computer Science
; Engineering
; Robotics
|
WOS类目 | Automation & Control Systems
; Computer Science, Artificial Intelligence
; Engineering, Electrical & Electronic
; Robotics
|
WOS记录号 | WOS:000909405303133
|
来源库 | IEEE
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9981153 |
引用统计 |
被引频次[WOS]:0
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/420617 |
专题 | 工学院_机械与能源工程系 工学院_计算机科学与工程系 工学院_生物医学工程系 |
作者单位 | 1.Department of Computer Science, The University of Hong Kong 2.Department of Biomedical Engineering, City University of Hong Kong 3.Department of Mechanical and Energy Engineering, Southern University of Science and Technology |
推荐引用方式 GB/T 7714 |
Fan Zhu,Ruixing Jia,Lei Yang,et al. Visual-tactile Sensing for Real-time Liquid Volume Estimation in Grasping[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2022:12542-12549.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论