中文版 | English
题名

FedGait: A Benchmark for Federated Gait Recognition

作者
DOI
发表日期
2022
会议名称
26th International Conference on Pattern Recognition / 8th International Workshop on Image Mining - Theory and Applications (IMTA)
ISSN
1051-4651
ISBN
978-1-6654-9063-4
会议录名称
页码
1371-1377
会议日期
21-25 Aug. 2022
会议地点
Montreal, QC, Canada
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要
Gait recognition has been greatly improved by deep learning and can achieve a relative high accuracy. The advances depend on the data size of gait. However, due to public concerns on privacy and regulations and laws from different countries, it is very difficult and almost impossible to collect a huge centralized gait database for algorithm training. Federated learning is a distributed machine learning technique for privacy-preserving, and can help to solve the problem. We propose a federated gait recognition benchmark, FedGait, to train algorithms using distributed gait data. It is the first benchmark on gait recognition to the best of our knowledge. FedGait can utilizes the gait videos available on multiple clients to learn a robust and generalized model. Based on the real-world gait scenarios, we introduce two federated gait recognition scenarios: institution-based scenario (IBS) and device-based scenario (DBS). Compared with centralized training, federated learning will encounter more serious heterogeneous data and data imbalance problems. We employ four popular databases for experiments, CASIA-B, CASIA-E, ReSGait and OU-MVLP, are involved in FedGait to investigate the problems in federated learning. We hope FedGait is a good start to solve data privacy problem in gait recognition.
关键词
学校署名
其他
语种
英语
相关链接[IEEE记录]
收录类别
资助项目
National Natural Science Foundation of China[61976144]
WOS研究方向
Computer Science ; Engineering ; Imaging Science & Photographic Technology
WOS类目
Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic ; Imaging Science & Photographic Technology
WOS记录号
WOS:000897707601053
来源库
IEEE
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9956474
引用统计
被引频次[WOS]:2
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/420619
专题工学院_计算机科学与工程系
作者单位
1.College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China
2.Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China
推荐引用方式
GB/T 7714
Ziqiong Li,Yan-Ran Li,Shiqi Yu. FedGait: A Benchmark for Federated Gait Recognition[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2022:1371-1377.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Ziqiong Li]的文章
[Yan-Ran Li]的文章
[Shiqi Yu]的文章
百度学术
百度学术中相似的文章
[Ziqiong Li]的文章
[Yan-Ran Li]的文章
[Shiqi Yu]的文章
必应学术
必应学术中相似的文章
[Ziqiong Li]的文章
[Yan-Ran Li]的文章
[Shiqi Yu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。