中文版 | English
题名

Neural Architecture Search as Multiobjective Optimization Benchmarks: Problem Formulation and Performance Assessment

作者
通讯作者Ran Cheng
发表日期
2023-01-02
DOI
发表期刊
ISSN
1089-778X
EISSN
1941-0026
卷号PP期号:99页码:1-1
摘要

The ongoing advancements in network architecture design have led to remarkable achievements in deep learning across various challenging computer vision tasks. Meanwhile, the development of neural architecture search (NAS) has provided promising approaches to automating the design of network architectures for lower prediction error. Recently, the emerging application scenarios of deep learning (e.g., autonomous driving) have raised higher demands for network architectures considering multiple design criteria: number of parameters/weights, number of floating-point operations, inference latency, among others. From an optimization point of view, the NAS tasks involving multiple design criteria are intrinsically multiobjective optimization problems; hence, it is reasonable to adopt evolutionary multiobjective optimization (EMO) algorithms for tackling them. Nonetheless, there is still a clear gap confining the related research along this pathway: on the one hand, there is a lack of a general problem formulation of NAS tasks from an optimization point of view; on the other hand, there are challenges in conducting benchmark assessments of EMO algorithms on NAS tasks. To bridge the gap: (i) we formulate NAS tasks into general multi-objective optimization problems and analyze the complex characteristics from an optimization point of view; (ii) we present an end-to-end pipeline, dubbed EvoXBench, to generate benchmark test problems for EMO algorithms to run efficiently -without the requirement of GPUs or Pytorch/Tensorflow; (iii) we instantiate two test suites comprehensively covering two datasets, seven search spaces, and three hardware devices, involving up to eight objectives. Based on the above, we validate the proposed test suites using six representative EMO algorithms and provide some empirical analyses. The code of EvoXBench is available at https://github.com/EMI-Group/EvoXBench.

关键词
相关链接[IEEE记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一 ; 通讯
WOS研究方向
Computer Science
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods
WOS记录号
WOS:001196821000014
出版者
ESI学科分类
COMPUTER SCIENCE
来源库
IEEE
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10004638
引用统计
被引频次[WOS]:51
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/420621
专题工学院_计算机科学与工程系
作者单位
1.Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China
2.Department of Computer Science, University of Surrey, Guildford, U.K.
3.Department of Computing, The Hong Kong Polytechnic University, Hong Kong, Hong Kong
4.Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI, USA
第一作者单位计算机科学与工程系
通讯作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Zhichao Lu,Ran Cheng,Yaochu Jin,et al. Neural Architecture Search as Multiobjective Optimization Benchmarks: Problem Formulation and Performance Assessment[J]. IEEE Transactions on Evolutionary Computation,2023,PP(99):1-1.
APA
Zhichao Lu,Ran Cheng,Yaochu Jin,Kay Chen Tan,&Kalyanmoy Deb.(2023).Neural Architecture Search as Multiobjective Optimization Benchmarks: Problem Formulation and Performance Assessment.IEEE Transactions on Evolutionary Computation,PP(99),1-1.
MLA
Zhichao Lu,et al."Neural Architecture Search as Multiobjective Optimization Benchmarks: Problem Formulation and Performance Assessment".IEEE Transactions on Evolutionary Computation PP.99(2023):1-1.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
Neural_Architecture_(4751KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhichao Lu]的文章
[Ran Cheng]的文章
[Yaochu Jin]的文章
百度学术
百度学术中相似的文章
[Zhichao Lu]的文章
[Ran Cheng]的文章
[Yaochu Jin]的文章
必应学术
必应学术中相似的文章
[Zhichao Lu]的文章
[Ran Cheng]的文章
[Yaochu Jin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。