中文版 | English
题名

Multi-Label Classification via Adaptive Resonance Theory-Based Clustering

作者
发表日期
2022
DOI
发表期刊
ISSN
1939-3539
EISSN
1939-3539
卷号PP期号:99页码:1-18
摘要
This article proposes a multi-label classification algorithm capable of continual learning by applying an Adaptive Resonance Theory (ART)-based clustering algorithm and the Bayesian approach for label probability computation. The ART-based clustering algorithm adaptively and continually generates prototype nodes corresponding to given data, and the generated nodes are used as classifiers. The label probability computation independently counts the number of label appearances for each class and calculates the Bayesian probabilities. Thus, the label probability computation can cope with an increase in the number of labels. Experimental results with synthetic and real-world multi-label datasets show that the proposed algorithm has competitive classification performance to other well-known algorithms while realizing continual learning.
关键词
相关链接[IEEE记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
资助项目
Japan Society for the Promotion of Science (JSPS) KAKENHI[JP22K12199] ; Universiti Malaya Impact-oriented Interdisciplinary Research Grant Programme[IIRG002C-19HWB] ; Universiti Malaya Covid-19 Related Special Research under Grant (UMCSRG) from University of Malaya[CSRG008-2020ST] ; National Natural Science Foundation of China[61876075] ; Guangdong Provincial Key Laboratory[2020B121201001] ; Program for Guangdong Introducing Innovative and Enterpreneurial Teams[2017ZT07X386] ; Stable Support Plan Program of Shenzhen Natural Science Fund[20200925174447003] ; Shenzhen Science and Technology Program[KQTD2016112514355531]
WOS研究方向
Computer Science ; Engineering
WOS类目
Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic
WOS记录号
WOS:001004665900050
出版者
EI入藏号
20230313393601
EI主题词
Classification (of information) ; Clustering algorithms ; Computation theory ; Learning algorithms ; Learning systems ; Machine learning
EI分类号
Information Theory and Signal Processing:716.1 ; Computer Theory, Includes Formal Logic, Automata Theory, Switching Theory, Programming Theory:721.1 ; Artificial Intelligence:723.4 ; Machine Learning:723.4.2 ; Information Sources and Analysis:903.1 ; Combinatorial Mathematics, Includes Graph Theory, Set Theory:921.4
ESI学科分类
ENGINEERING
来源库
IEEE
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9992110
引用统计
被引频次[WOS]:7
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/420628
专题工学院_计算机科学与工程系
作者单位
1.Graduate School of Informatics, Osaka Metropolitan University, Sakai-Shi, Osaka, Japan
2.Faculty of Computer Science and Information Technology, University of Malaya, Kuala Lumpur, Malaysia
3.Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation, Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China
推荐引用方式
GB/T 7714
Naoki Masuyama,Yusuke Nojima,Chu Kiong Loo,et al. Multi-Label Classification via Adaptive Resonance Theory-Based Clustering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2022,PP(99):1-18.
APA
Naoki Masuyama,Yusuke Nojima,Chu Kiong Loo,&Hisao Ishibuchi.(2022).Multi-Label Classification via Adaptive Resonance Theory-Based Clustering.IEEE Transactions on Pattern Analysis and Machine Intelligence,PP(99),1-18.
MLA
Naoki Masuyama,et al."Multi-Label Classification via Adaptive Resonance Theory-Based Clustering".IEEE Transactions on Pattern Analysis and Machine Intelligence PP.99(2022):1-18.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Naoki Masuyama]的文章
[Yusuke Nojima]的文章
[Chu Kiong Loo]的文章
百度学术
百度学术中相似的文章
[Naoki Masuyama]的文章
[Yusuke Nojima]的文章
[Chu Kiong Loo]的文章
必应学术
必应学术中相似的文章
[Naoki Masuyama]的文章
[Yusuke Nojima]的文章
[Chu Kiong Loo]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。