题名 | Multi-Label Classification via Adaptive Resonance Theory-Based Clustering |
作者 | |
发表日期 | 2022
|
DOI | |
发表期刊 | |
ISSN | 1939-3539
|
EISSN | 1939-3539
|
卷号 | PP期号:99页码:1-18 |
摘要 | This article proposes a multi-label classification algorithm capable of continual learning by applying an Adaptive Resonance Theory (ART)-based clustering algorithm and the Bayesian approach for label probability computation. The ART-based clustering algorithm adaptively and continually generates prototype nodes corresponding to given data, and the generated nodes are used as classifiers. The label probability computation independently counts the number of label appearances for each class and calculates the Bayesian probabilities. Thus, the label probability computation can cope with an increase in the number of labels. Experimental results with synthetic and real-world multi-label datasets show that the proposed algorithm has competitive classification performance to other well-known algorithms while realizing continual learning. |
关键词 | |
相关链接 | [IEEE记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 其他
|
资助项目 | Japan Society for the Promotion of Science (JSPS) KAKENHI[JP22K12199]
; Universiti Malaya Impact-oriented Interdisciplinary Research Grant Programme[IIRG002C-19HWB]
; Universiti Malaya Covid-19 Related Special Research under Grant (UMCSRG) from University of Malaya[CSRG008-2020ST]
; National Natural Science Foundation of China[61876075]
; Guangdong Provincial Key Laboratory[2020B121201001]
; Program for Guangdong Introducing Innovative and Enterpreneurial Teams[2017ZT07X386]
; Stable Support Plan Program of Shenzhen Natural Science Fund[20200925174447003]
; Shenzhen Science and Technology Program[KQTD2016112514355531]
|
WOS研究方向 | Computer Science
; Engineering
|
WOS类目 | Computer Science, Artificial Intelligence
; Engineering, Electrical & Electronic
|
WOS记录号 | WOS:001004665900050
|
出版者 | |
EI入藏号 | 20230313393601
|
EI主题词 | Classification (of information)
; Clustering algorithms
; Computation theory
; Learning algorithms
; Learning systems
; Machine learning
|
EI分类号 | Information Theory and Signal Processing:716.1
; Computer Theory, Includes Formal Logic, Automata Theory, Switching Theory, Programming Theory:721.1
; Artificial Intelligence:723.4
; Machine Learning:723.4.2
; Information Sources and Analysis:903.1
; Combinatorial Mathematics, Includes Graph Theory, Set Theory:921.4
|
ESI学科分类 | ENGINEERING
|
来源库 | IEEE
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9992110 |
引用统计 |
被引频次[WOS]:7
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/420628 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | 1.Graduate School of Informatics, Osaka Metropolitan University, Sakai-Shi, Osaka, Japan 2.Faculty of Computer Science and Information Technology, University of Malaya, Kuala Lumpur, Malaysia 3.Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation, Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China |
推荐引用方式 GB/T 7714 |
Naoki Masuyama,Yusuke Nojima,Chu Kiong Loo,et al. Multi-Label Classification via Adaptive Resonance Theory-Based Clustering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2022,PP(99):1-18.
|
APA |
Naoki Masuyama,Yusuke Nojima,Chu Kiong Loo,&Hisao Ishibuchi.(2022).Multi-Label Classification via Adaptive Resonance Theory-Based Clustering.IEEE Transactions on Pattern Analysis and Machine Intelligence,PP(99),1-18.
|
MLA |
Naoki Masuyama,et al."Multi-Label Classification via Adaptive Resonance Theory-Based Clustering".IEEE Transactions on Pattern Analysis and Machine Intelligence PP.99(2022):1-18.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论