中文版 | English
题名

Ⅴ型肌球蛋白的货物识别和活性调控的结构生物学研究

其他题名
STRUCTURAL STUDY OF CARGO RECOGINATION AND ACTIVITY REGULATION OF CLASS V MYOSINS
姓名
姓名拼音
LIU Yong
学号
11849501
学位类型
博士
学位专业
071010 生物化学与分子生物学
学科门类/专业学位类别
07 理学
导师
魏志毅
导师单位
生物系
论文答辩日期
2022-10-21
论文提交日期
2023-01-04
学位授予单位
哈尔滨工业大学
学位授予地点
哈尔滨
摘要
  Ⅴ型肌球蛋白是非常规肌球蛋白家族中最具有代表性的成员之一,在物种间的分布十分广泛,从出芽酵母(Myo2 Myo4)到脊椎动物(MyoⅤaMyoⅤbMyoⅤc)都有表达。型肌球蛋白在细胞内的主要功能是将各种细胞成分运送到目的地,包括多种细胞器(比如囊泡、线粒体、黑色素体等)、蛋白质分子、mRNA 等等,进而参与细胞生命活动许多重要的过程,如细胞分裂、细胞迁移、胞吞胞吐、神经递质的传递等。在型肌球蛋白不工作时,采用一种头尾相接的自抑制的模式来避免细胞内能量的浪费;而当需要运送货物时,其 ATP 酶的活性和运动能力就会被激活。型肌球蛋白研究领域存在两个重要的科学问题:1型肌球蛋白如何通过其球状尾部结构域来特异性识别细胞内种类繁多的货物;2)在识别正确货物之后,型肌球蛋白是如何实现从自抑制到活性构象的转变。本论文针对这两个问题进行了深入探究。
  本论文的第一部分,我们利用出芽酵母中的型肌球蛋白 Myo2 作为模型,系统研究了 Myo2 的球状尾部结构域(Myo2-GTD)识别和结合货物的机制。本论文中采用了一种基于 AlphaFold2 算法的复合物预测工具 ColabFold Myo2-GTD 和货物衔接蛋白的复合物进行了结构预测。首先,我们利用已知晶体结构的 Myo2-GTD 相关复合物来建立有效的结构预测方案,探究 ColabFold对本研究的适用性,并确定了能够判断预测可信度的依据。在此基础之上,成功预测得到了 Myo2-GTD Vac17Kar9Pea2 三个货物衔接蛋白的复合物结构,并用生化实验验证了预测结构的正确性。通过系统地比较 Myo2 与晶体和预测所得的六个货物衔接蛋白所形成复合物的相互作用细节,我们总结出了Myo2-GTD 上三个保守位点的货物结合模式,揭示了 Myo2 能够特异性识别和结合多个货物的结构基础。此外,我们展示了如何利用基于 AlphaFold2 的结构预测来便捷地研究蛋白质-蛋白质相互作用的有效策略。
  本论文的第二部分,为了揭示型肌球蛋白自抑制的形成及活性调控机制,我们使用鼠源的 MyoⅤa 进行结构生物学研究。我们利用昆虫细胞-杆状病毒表达系统成功表达并纯化出了 MyoⅤa 全长蛋白与钙调蛋白的复合物。通过缓冲液和交联条件筛选,得到了构象均一、呈自抑制状态的 MyoⅤa 复合物,并利用冷冻电镜技术解析了该复合物的结构,总体分辨率为 4.78 埃。结构分析显示,MyoⅤa 二聚体与十二个钙调蛋白结合,形成了独特的头尾相接的三角形构象。这一构象通过多种分子间和分子内的相互作用来稳定,包括头部马达结构域和球状尾部结构域的结合、钙调蛋白和卷曲螺旋的结合、卷曲螺旋和球状尾部结构域的结合以及球状尾部结构域之间的结合。通过在这些不同的相互作用面上引入突变和加入多种不同的货物,结合测定 ATP 酶活性的方法,我们探究了不同相互作用面在维持自抑制状态中的不同作用,并提出了货物激活 MyoⅤa 的分子机制。
  通过以上两部分的研究,我们利用复合物结构预测工具 ColabFold 获得了出芽酵母中型肌球蛋白的球状尾部结构域与货物衔接蛋白的复合物结构,利用单颗粒冷冻电镜技术解析了近原子分辨率的鼠源型肌球蛋白 MyoVa 全长与钙调蛋白的复合物结构,阐释了型肌球蛋白的货物识别和结合机制,并揭示了货物的结合在型肌球蛋白激活过程中的调控机制。
其他摘要

As the representative member of unconventional myosins, class V myosins are widely expressed in eukaryotes, from Saccharomyces cerevisiae (Myo2 and Myo4) to vertebrates (MyoⅤaMyoⅤb and MyoⅤc). The main function of class V myosins in cells is to transport cellular components to their destinations, including a broad range of organelles (such as vesicles, mitochondria, melanosomes, etc.), mRNA, etc., which are involved in various cellular processes, such as cell division, cell migration, endocytosis and exocytosis, and neurotransmitter transmission. Class V myosins can adopt an open/extended and closed/folded conformations. With loaded cargos, Class V myosins have full ATPase activity and can walk along F-actin. Without cargos, the C-terminal globular tail domain folds back to the N-terminal motor domain forming the closed and ATPase activity-inhibited state that loses the motility capacity. There are two important scientific questions in the research field of class V myosins: 1) how class V myosins specifically recognize a wide range of cargoes through its globular tail domain; 2) how it switches from an autoinhibited to active conformation after binding to the cargos. I investigated these two questions in this study.

In the part 1, we systematically investigated the mechanism of the globular tail domain recognizing cargos using Myo2, a class V myosin protein in Saccharomyces cerevisiae. In order to understand how Myo2-GTD recognizing various cargos, we used ColabFold, a AlphaFold2-based complex structure prediction tool, to predict the Myo2-GTD and cargo adaptor complex. First, we use the previously-solved crystal structures of Myo2-GTD and cargo adaptor as a benchmarking to establish the structure prediction scheme of ColabFold and find a criterion for judging the reliability of the prediction results. Base on this, we successfully predicted the structures of Myo2-GTD in complex with three cargo adapter proteins: Vac17, Kar9, Pea2, which were verified by biochemical experiments. By systematically comparing the interaction details of the complexe structures formed by Myo2 and six cargo adaptors, we summarized the binding modes of three conserved sites on Myo2-GTD, revealing the basis of how Myo2 can recognize and bind multiple cargos specifically. Furthermore, we showed that the AlphaFold2-based structure prediction can be used to study protein-protein interactions conveniently and efficiently.

In the part 2, in order to reveal the mechanisms of the autoinhibition and activation mechanism of class V myosins, we used murine MyoⅤa for structural studies. We successfully expressed and purified the complex of the full-length MyoⅤa and calmodulin(CaM) using the insect cell-baculovirus expression system. After screening buffer and cross-linking conditions, we obtained the MyoⅤa-CaM complex with an autoinhibition conformation and determined a 4.78 angstrom cryo-EM structure in the closed state. The MyoVa dimer adopts a triangular-shaped structure with multiple inter- and intra-molecular interactions in establishing the closed state with cargo binding and ATPase activity inhibited. These interactions are formed between the head motor domain and the GTD, the CaM and the coiled-coil, the coiled-coil and the GTD, and the two GTDs. By measuring ATPase activity, we revealed a unique asymmetric autoinhibition mechanism, in which the cargo-binding sites in the two protomers of the MyoVa dimer are differently protected. Thus, our study indicates that the specific and efficient activation of MyoVa requires coincident binding of multiple cargos or cargo adaptors.

Together, we obtained the complex structures of Myo2-GTD and cargo adaptors using ColabFold, the MyoVa full length and calmodulin complex at near-atomic resolution using single-particle cryo-electron microscopy (Cryo-EM), demonstrated the cargo recognition and binding mechanism of class V myosins, and revealed the activity regulation mechanism of class V myosins mediated by cargo binding.

关键词
其他关键词
语种
中文
培养类别
联合培养
入学年份
2018
学位授予年份
2022-12
参考文献列表

[1] KOLOMEISKY A B, FISHER M E. Molecular motors: a theorist's perspective[J]. Annu Rev Phys Chem, 2007, 58: 675-695.
[2] VALE R D. The molecular motor toolbox for intracellular transport[J]. Cell, 2003, 112(4): 467-480.
[3] VEIGEL C, SCHMIDT C F. Moving into the cell: single-molecule studies of molecular motors in complex environments[J]. Nat Rev Mol Cell Biol, 2011, 12(3): 163-176.
[4] HARTMAN M A, FINAN D, SIVARAMAKRISHNAN S, et al. Principles of unconventional myosin function and targeting[J]. Annu Rev Cell Dev Biol, 2011, 27: 133-155.
[5] HIROKAWA N, TAKEMURA R. Molecular motors and mechanisms of directional transport in neurons[J]. Nat Rev Neurosci, 2005, 6(3): 201-214.
[6] KOLOMEISKY A B. Motor proteins and molecular motors: how to operate machines at the nanoscale[J]. J Phys Condens Matter, 2013, 25(46): 463101.
[7] HIROKAWA N, NIWA S, TANAKA Y. Molecular motors in neurons: transport mechanisms and roles in brain function, development, and disease[J]. Neuron, 2010, 68(4): 610-638.
[8] MAVROIDIS C, DUBEY A, YARMUSH M L. Molecular machines[J]. Annu Rev Biomed Eng, 2004, 6: 363-395.
[9] HIROKAWA N, NODA Y, TANAKA Y, et al. Kinesin superfamily motor proteins and intracellular transport[J]. Nat Rev Mol Cell Biol, 2009, 10(10): 682-696.
[10] SWEENEY H L, HOLZBAUR E L F. Motor Proteins[J]. Cold Spring Harb Perspect Biol, 2018, 10(5).
[11] KRUPPA A J, BUSS F. Motor proteins at the mitochondria-cytoskeleton interface[J]. J Cell Sci, 2021, 134(7).
[12] TITUS M A. Myosin-Driven Intracellular Transport[J]. Cold Spring Harb Perspect Biol, 2018, 10(3).
[13] TAFT M H, LATHAM S L. Myosin XVIII[J]. Adv Exp Med Biol, 2020, 1239: 421-438.
[14] BUGYI B, KENGYEL A. Myosin XVI[J]. Adv Exp Med Biol, 2020, 1239: 405-419.
[15] MAGISTRATI E, POLO S. Myomics: myosin VI structural and functional plasticity[J]. Curr Opin Struct Biol, 2021, 67: 33-40.
[16] WONG S, WEISMAN L S. Roles and regulation of myosin V interaction with cargo[J]. Adv Biol Regul, 2021, 79: 100787.
[17] HAMMER J A, 3RD, SELLERS J R. Walking to work: roles for class V myosins as cargo transporters[J]. Nat Rev Mol Cell Biol, 2011, 13(1): 13-26.
[18] MEHTA A D, ROCK R S, RIEF M, et al. Myosin-V is a processive actin-based motor[J]. Nature, 1999, 400(6744): 590-593.
[19] MIKLAVC P, FRICK M. Actin and Myosin in Non-Neuronal Exocytosis[J]. Cells, 2020, 9(6).
[20] MALY I V, HOFMANN W A. Myosins in the Nucleus[J]. Adv Exp Med Biol, 2020, 1239: 199-231.
[21] XUE R, MENG H, YIN J, et al. The Role of Calmodulin vs. Synaptotagmin in Exocytosis[J]. Front Mol Neurosci, 2021, 14: 691363.
[22] HOUDUSSE A, TITUS M A. The many roles of myosins in filopodia, microvilli and stereocilia[J]. Curr Biol, 2021, 31(10): R586-R602.
[23] PASTURAL E, BARRAT F J, DUFOURCQ-LAGELOUSE R, et al. Griscelli disease maps to chromosome 15q21 and is associated with mutations in the myosin-Va gene[J]. Nat Genet, 1997, 16(3): 289-292.
[24] MULLER T, HESS M W, SCHIEFERMEIER N, et al. MYO5B mutations cause microvillus inclusion disease and disrupt epithelial cell polarity[J]. Nat Genet, 2008, 40(10): 1163-1165.
[25] VAN GELE M, DYNOODT P, LAMBERT J. Griscelli syndrome: a model system to study vesicular trafficking[J]. Pigment Cell Melanoma Res, 2009, 22(3): 268-282.
[26] TANG K, LI Y, YU C, et al. Structural mechanism for versatile cargo recognition by the yeast class V myosin Myo2[J]. J Biol Chem, 2019, 294(15): 5896-5906.
[27] WEI Z, LIU X, YU C, et al. Structural basis of cargo recognitions for class V myosins[J]. Proc Natl Acad Sci U S A, 2013, 110(28): 11314-11319.
[28] RECK-PETERSON S L, PROVANCE D W, JR., MOOSEKER M S, et al. Class V myosins[J]. Biochim Biophys Acta, 2000, 1496(1): 36-51.
[29] WONG S, WEISMAN L S. Let it go: mechanisms that detach myosin V from the yeast vacuole[J]. Curr Genet, 2021, 67(6): 865-869.
[30] LI J, ZHANG M. Cargo Binding by Unconventional Myosins[J]. Adv Exp Med Biol, 2020, 1239: 21-40.
[31] LI X D, MABUCHI K, IKEBE R, et al. Ca2+-induced activation of ATPase activity of myosin Va is accompanied with a large conformational change[J]. Biochem Biophys Res Commun, 2004, 315(3): 538-545.
[32] WANG F, THIRUMURUGAN K, STAFFORD W F, et al. Regulated conformation of myosin V[J]. J Biol Chem, 2004, 279(4): 2333-2336.
[33] KREMENTSOV D N, KREMENTSOVA E B, TRYBUS K M. Myosin V: regulation by calcium, calmodulin, and the tail domain[J]. J Cell Biol, 2004, 164(6): 877-886.
[34] ZHANG N, YAO L L, LI X D. Regulation of class V myosin[J]. Cell Mol Life Sci, 2018, 75(2): 261-273.
[35] MIRDITA M, SCHUTZE K, MORIWAKI Y, et al. ColabFold: making protein folding accessible to all[J]. Nat Methods, 2022, 19(6): 679-682.
[36] BARLAN K, GELFAND V I. Microtubule-Based Transport and the Distribution, Tethering, and Organization of Organelles[J]. Cold Spring Harb Perspect Biol, 2017, 9(5).
[37] HOWARD J. Jonathon Howard[J]. Trends Cell Biol, 2001, 11(11): 452-453.
[38] KANNING K C, KAPLAN A, HENDERSON C E. Motor neuron diversity in development and disease[J]. Annu Rev Neurosci, 2010, 33: 409-440.
[39] RUFFOLI R, BIAGIONI F, BUSCETI C L, et al. Neurons other than motor neurons in motor neuron disease[J]. Histol Histopathol, 2017, 32(11): 1115-1123.
[40] ARBER S. Motor circuits in action: specification, connectivity, and function[J]. Neuron, 2012, 74(6): 975-989.
[41] KABSCH W, MANNHERZ H G, SUCK D, et al. Atomic structure of the actin:DNase I complex[J]. Nature, 1990, 347(6288): 37-44.
[42] KHAITLINA S Y. Intracellular transport based on actin polymerization[J]. Biochemistry (Mosc), 2014, 79(9): 917-927.
[43] SCHAKS M, GIANNONE G, ROTTNER K. Actin dynamics in cell migration[J]. Essays Biochem, 2019, 63(5): 483-495.
[44] LJUBOJEVIC N, HENDERSON J M, ZURZOLO C. The Ways of Actin: Why Tunneling Nanotubes Are Unique Cell Protrusions[J]. Trends Cell Biol, 2021, 31(2): 130-142.
[45] POLLARD T D. Actin and Actin-Binding Proteins[J]. Cold Spring Harb Perspect Biol, 2016, 8(8).
[46] WANG L, CHITANO P, SEOW C Y. Filament evanescence of myosin II and smooth muscle function[J]. J Gen Physiol, 2021, 153(3).
[47] MISHRA M, KASHIWAZAKI J, TAKAGI T, et al. In vitro contraction of cytokinetic ring depends on myosin II but not on actin dynamics[J]. Nat Cell Biol, 2013, 15(7): 853-859.
[48] BERG J S, POWELL B C, CHENEY R E. A millennial myosin census[J]. Mol Biol Cell, 2001, 12(4): 780-794.
[49] YANG S, TIWARI P, LEE K H, et al. Cryo-EM structure of the inhibited (10S) form of myosin II[J]. Nature, 2020, 588(7838): 521-525.
[50] HEISSLER S M, ARORA A S, BILLINGTON N, et al. Cryo-EM structure of the autoinhibited state of myosin-2[J]. Sci Adv, 2021, 7(52): eabk3273.
[51] PORRO C, PENNELLA A, PANARO M A, et al. Functional Role of Non-Muscle Myosin II in Microglia: An Updated Review[J]. Int J Mol Sci, 2021, 22(13).
[52] LI J, LU Q, ZHANG M. Structural Basis of Cargo Recognition by Unconventional Myosins in Cellular Trafficking[J]. Traffic, 2016, 17(8): 822-838.
[53] FILI N, TOSELAND C P. Unconventional Myosins: How Regulation Meets Function[J]. Int J Mol Sci, 2019, 21(1).
[54] FOTH B J, GOEDECKE M C, SOLDATI D. New insights into myosin evolution and classification[J]. Proc Natl Acad Sci U S A, 2006, 103(10): 3681-3686.
[55] ODRONITZ F, KOLLMAR M. Drawing the tree of eukaryotic life based on the analysis of 2,269 manually annotated myosins from 328 species[J]. Genome Biol, 2007, 8(9): R196.
[56] BOCANEGRA J L, ADIKES R, QUINTERO O A. Myosin XIX[J]. Adv Exp Med Biol, 2020, 1239: 439-451.
[57] PROVANCE D W, MERCER J A. Myosin-V: head to tail[J]. Cell Mol Life Sci, 1999, 56(3-4): 233-242.
[58] TRYBUS K M. Myosin V from head to tail[J]. Cell Mol Life Sci, 2008, 65(9): 1378-1389.
[59] TANAKA H, HOMMA K, IWANE A H, et al. The motor domain determines the large step of myosin-V[J]. Nature, 2002, 415(6868): 192-195.
[60] KODERA N, ANDO T. The path to visualization of walking myosin V by high-speed atomic force microscopy[J]. Biophys Rev, 2014, 6(3-4): 237-260.
[61] SWEENEY H L, HOUDUSSE A. Myosin VI rewrites the rules for myosin motors[J]. Cell, 2010, 141(4): 573-582.
[62] YU C, FENG W, WEI Z, et al. Myosin VI undergoes cargo-mediated dimerization[J]. Cell, 2009, 138(3): 537-548.
[63] LEWIS J H, BEAUSANG J F, SWEENEY H L, et al. The azimuthal path of myosin V and its dependence on lever-arm length[J]. J Gen Physiol, 2012, 139(2): 101-120.
[64] SATO O, JUNG H S, KOMATSU S, et al. Activated full-length myosin-X moves processively on filopodia with large steps toward diverse two-dimensional directions[J]. Sci Rep, 2017, 7: 44237.
[65] IKEZAKI K, KOMORI T, ARAI Y, et al. Lever arm extension of myosin VI is unnecessary for the adjacent binding state[J]. Biophysics (Nagoya-shi), 2015, 11: 47-53.
[66] HEISSLER S M, SELLERS J R. Myosin light chains: Teaching old dogs new tricks[J]. Bioarchitecture, 2014, 4(6): 169-188.
[67] RAHMANI H, MA W, HU Z, et al. The myosin II coiled-coil domain atomic structure in its native environment[J]. Proc Natl Acad Sci U S A, 2021, 118(14).
[68] CHENEY R E, O'SHEA M K, HEUSER J E, et al. Brain myosin-V is a two-headed unconventional myosin with motor activity[J]. Cell, 1993, 75(1): 13-23.
[69] KRENDEL M, MOOSEKER M S. Myosins: tails (and heads) of functional diversity[J]. Physiology (Bethesda), 2005, 20: 239-251.
[70] LU Q, LI J, ZHANG M. Cargo recognition and cargo-mediated regulation of unconventional myosins[J]. Acc Chem Res, 2014, 47(10): 3061-3070.
[71] MULLER R T, HONNERT U, REINHARD J, et al. The rat myosin myr 5 is a GTPase-activating protein for Rho in vivo: essential role of arginine 1695[J]. Mol Biol Cell, 1997, 8(10): 2039-2053.
[72] POST P L, BOKOCH G M, MOOSEKER M S. Human myosin-IXb is a mechanochemically active motor and a GAP for rho[J]. J Cell Sci, 1998, 111 ( Pt 7): 941-950.
[73] KODERA N, ANDO T. High-Speed Atomic Force Microscopy to Study Myosin Motility[J]. Adv Exp Med Biol, 2020, 1239: 127-152.
[74] ROBERT-PAGANIN J, PYLYPENKO O, KIKUTI C, et al. Force Generation by Myosin Motors: A Structural Perspective[J]. Chem Rev, 2020, 120(1): 5-35.
[75] GUHATHAKURTA P, PROCHNIEWICZ E, THOMAS D D. Actin-Myosin Interaction: Structure, Function and Drug Discovery[J]. Int J Mol Sci, 2018, 19(9).
[76] DORAN M H, LEHMAN W. The Central Role of the F-Actin Surface in Myosin Force Generation[J]. Biology (Basel), 2021, 10(12).
[77] EWERT W, FRANZ P, TSIAVALIARIS G, et al. Structural and Computational Insights into a Blebbistatin-Bound Myosin*ADP Complex with Characteristics of an ADP-Release Conformation along the Two-Step Myosin Power Stoke[J]. Int J Mol Sci, 2020, 21(19).
[78] LYMN R W, TAYLOR E W. Mechanism of adenosine triphosphate hydrolysis by actomyosin[J]. Biochemistry, 1971, 10(25): 4617-4624.
[79] NAGY N T, SAKAMOTO T, TAKACS B, et al. Functional adaptation of the switch-2 nucleotide sensor enables rapid processive translocation by myosin-5[J]. FASEB J, 2010, 24(11): 4480-4490.
[80] GUNTHER L K, ROHDE J A, TANG W, et al. Converter domain mutations in myosin alter structural kinetics and motor function[J]. J Biol Chem, 2019, 294(5): 1554-1567.
[81] LARSON R E. Myosin-V: a class of unconventional molecular motors[J]. Braz J Med Biol Res, 1996, 29(3): 309-318.
[82] BANERJEE C, HU Z, HUANG Z, et al. The structure of the actin-smooth muscle myosin motor domain complex in the rigor state[J]. J Struct Biol, 2017, 200(3): 325-333.
[83] COUREUX P D, SWEENEY H L, HOUDUSSE A. Three myosin V structures delineate essential features of chemo-mechanical transduction[J]. EMBO J, 2004, 23(23): 4527-4537.
[84] ESPINDOLA F S, SUTER D M, PARTATA L B, et al. The light chain composition of chicken brain myosin-Va: calmodulin, myosin-II essential light chains, and 8-kDa dynein light chain/PIN[J]. Cell Motil Cytoskeleton, 2000, 47(4): 269-281.
[85] HOUDUSSE A, GAUCHER J F, KREMENTSOVA E, et al. Crystal structure of apo-calmodulin bound to the first two IQ motifs of myosin V reveals essential recognition features[J]. Proc Natl Acad Sci U S A, 2006, 103(51): 19326-19331.
[86] TYSKA M J, MOOSEKER M S. Myosin-V motility: these levers were made for walking[J]. Trends Cell Biol, 2003, 13(9): 447-451.
[87] HOMMA K, SAITO J, IKEBE R, et al. Ca(2+)-dependent regulation of the motor activity of myosin V[J]. J Biol Chem, 2000, 275(44): 34766-34771.
[88] WAGNER W, FODOR E, GINSBURG A, et al. The binding of DYNLL2 to myosin Va requires alternatively spliced exon B and stabilizes a portion of the myosin's coiled-coil domain[J]. Biochemistry, 2006, 45(38): 11564-11577.
[89] ZHANG W B, YAO L L, LI X D. The Globular Tail Domain of Myosin-5a Functions as a Dimer in Regulating the Motor Activity[J]. J Biol Chem, 2016, 291(26): 13571-13579.
[90] PYLYPENKO O, WELZ T, TITTEL J, et al. Coordinated recruitment of Spir actin nucleators and myosin V motors to Rab11 vesicle membranes[J]. Elife, 2016, 5.
[91] PYLYPENKO O, ATTANDA W, GAUQUELIN C, et al. Structural basis of myosin V Rab GTPase-dependent cargo recognition[J]. Proc Natl Acad Sci U S A, 2013, 110(51): 20443-20448.
[92] NIU F, SUN K, WEI W, et al. F-actin disassembly factor MICAL1 binding to Myosin Va mediates cargo unloading during cytokinesis[J]. Sci Adv, 2020, 6(45).
[93] AU J S, HUANG J D. A tissue-specific exon of myosin Va is responsible for selective cargo binding in melanocytes[J]. Cell Motil Cytoskeleton, 2002, 53(2): 89-102.
[94] MCCAFFREY M W, LINDSAY A J. Roles for myosin Va in RNA transport and turnover[J]. Biochem Soc Trans, 2012, 40(6): 1416-1420.
[95] WELZ T, KERKHOFF E. Exploring the iceberg: Prospects of coordinated myosin V and actin assembly functions in transport processes[J]. Small GTPases, 2019, 10(2): 111-121.
[96] KONCINA E, LETELLIER E. Myosins: Driving us towards novel targets and biomarkers in cancer[J]. Int Rev Cell Mol Biol, 2020, 356: 291-322.
[97] GROSSHANS B L, ORTIZ D, NOVICK P. Rabs and their effectors: achieving specificity in membrane traffic[J]. Proc Natl Acad Sci U S A, 2006, 103(32): 11821-11827.
[98] LANGEMEYER L, FROHLICH F, UNGERMANN C. Rab GTPase Function in Endosome and Lysosome Biogenesis[J]. Trends Cell Biol, 2018, 28(11): 957-970.
[99] HOMMA Y, HIRAGI S, FUKUDA M. Rab family of small GTPases: an updated view on their regulation and functions[J]. FEBS J, 2021, 288(1): 36-55.
[100] BORCHERS A C, LANGEMEYER L, UNGERMANN C. Who's in control? Principles of Rab GTPase activation in endolysosomal membrane trafficking and beyond[J]. J Cell Biol, 2021, 220(9).
[101] MIMA J. Reconstitution of membrane tethering mediated by Rab-family small GTPases[J]. Biophys Rev, 2018, 10(2): 543-549.
[102] MIMA J. Self-assemblies of Rab- and Arf-family small GTPases on lipid bilayers in membrane tethering[J]. Biophys Rev, 2021, 13(4): 531-539.
[103] KASSEM YOUSSEF H, RAMSTEIN C, GINGLINGER E, et al. [Griscelli syndrome type 3: A new case][J]. Ann Dermatol Venereol, 2018, 145(12): 785-789.
[104] MERCER J A, SEPERACK P K, STROBEL M C, et al. Novel myosin heavy chain encoded by murine dilute coat colour locus[J]. Nature, 1991, 349(6311): 709-713.
[105] OMAR-HMEADI M, IDEVALL-HAGREN O. Insulin granule biogenesis and exocytosis[J]. Cell Mol Life Sci, 2021, 78(5): 1957-1970.
[106] FRANCHINI L, STANIC J, BARZASI M, et al. Rabphilin-3A Drives Structural Modifications of Dendritic Spines Induced by Long-Term Potentiation[J]. Cells, 2022, 11(10).
[107] LISE M F, SRIVASTAVA D P, ARSTIKAITIS P, et al. Myosin-Va-interacting protein, RILPL2, controls cell shape and neuronal morphogenesis via Rac signaling[J]. J Cell Sci, 2009, 122(Pt 20): 3810-3821.
[108] NAMGOONG S, KIM N H. Roles of actin binding proteins in mammalian oocyte maturation and beyond[J]. Cell Cycle, 2016, 15(14): 1830-1843.
[109] HOLTHENRICH A, TERGLANE J, NASS J, et al. Spire1 and Myosin Vc promote Ca(2+)-evoked externalization of von Willebrand factor in endothelial cells[J]. Cell Mol Life Sci, 2022, 79(2): 96.
[110] MCGARRY D J, ARMSTRONG G, CASTINO G, et al. MICAL1 regulates actin cytoskeleton organization, directional cell migration and the growth of human breast cancer cells as orthotopic xenograft tumours[J]. Cancer Lett, 2021, 519: 226-236.
[111] HAIKAZIAN S, OLSON M F. MICAL1 Monooxygenase in Autosomal Dominant Lateral Temporal Epilepsy: Role in Cytoskeletal Regulation and Relation to Cancer[J]. Genes (Basel), 2022, 13(5).
[112] SCHIEL J A, SIMON G C, ZAHARRIS C, et al. FIP3-endosome-dependent formation of the secondary ingression mediates ESCRT-III recruitment during cytokinesis[J]. Nat Cell Biol, 2012, 14(10): 1068-1078.
[113] KURODA T S, ARIGA H, FUKUDA M. The actin-binding domain of Slac2-a/melanophilin is required for melanosome distribution in melanocytes[J]. Mol Cell Biol, 2003, 23(15): 5245-5255.
[114] WU X S, RAO K, ZHANG H, et al. Identification of an organelle receptor for myosin-Va[J]. Nat Cell Biol, 2002, 4(4): 271-278.
[115] JI H H, YAO L L, LIU C, et al. Regulation of Myosin-5b by Rab11a and the Rab11 family interacting protein 2[J]. Biosci Rep, 2019, 39(1).
[116] BACH S, COLAS P, BLONDEL M. [Budding yeast, a model and a tool... also for biomedical research][J]. Med Sci (Paris), 2020, 36(5): 504-514.
[117] FISCHER G, LITI G, LLORENTE B. The budding yeast life cycle: More complex than anticipated?[J]. Yeast, 2021, 38(1): 5-11.
[118] FRIEND J E, SAYYAD W A, ARASADA R, et al. Fission yeast Myo2: Molecular organization and diffusion in the cytoplasm[J]. Cytoskeleton (Hoboken), 2018, 75(4): 164-173.
[119] ALTMANN K, FRANK M, NEUMANN D, et al. The class V myosin motor protein, Myo2, plays a major role in mitochondrial motility in Saccharomyces cerevisiae[J]. J Cell Biol, 2008, 181(1): 119-130.
[120] GINGRAS R M, LWIN K M, MILLER A M, et al. Yeast Rgd3 is a phospho-regulated F-BAR-containing RhoGAP involved in the regulation of Rho3 distribution and cell morphology[J]. Mol Biol Cell, 2020, 31(23): 2570-2582.
[121] CHESARONE-CATALDO M, GUERIN C, YU J H, et al. The myosin passenger protein Smy1 controls actin cable structure and dynamics by acting as a formin damper[J]. Dev Cell, 2011, 21(2): 217-230.
[122] CHERNYAKOV I, SANTIAGO-TIRADO F, BRETSCHER A. Active segregation of yeast mitochondria by Myo2 is essential and mediated by Mmr1 and Ypt11[J]. Curr Biol, 2013, 23(18): 1818-1824.
[123] KRIKKEN A M, WU H, DE BOER R, et al. Peroxisome retention involves Inp1-dependent peroxisome-plasma membrane contact sites in yeast[J]. J Cell Biol, 2020, 219(10).
[124] FAGARASANU M, FAGARASANU A, RACHUBINSKI R A. Sharing the wealth: peroxisome inheritance in budding yeast[J]. Biochim Biophys Acta, 2006, 1763(12): 1669-1677.
[125] BOLDOGH I R, FEHRENBACHER K L, YANG H C, et al. Mitochondrial movement and inheritance in budding yeast[J]. Gene, 2005, 354: 28-36.
[126] SARAYA R, CEPINSKA M N, KIEL J A, et al. A conserved function for Inp2 in peroxisome inheritance[J]. Biochim Biophys Acta, 2010, 1803(5): 617-622.
[127] WONG S, HEPOWIT N L, PORT S A, et al. Cargo Release from Myosin V Requires the Convergence of Parallel Pathways that Phosphorylate and Ubiquitylate the Cargo Adaptor[J]. Curr Biol, 2020, 30(22): 4399-4412 e4397.
[128] TANG F, KAUFFMAN E J, NOVAK J L, et al. Regulated degradation of a class V myosin receptor directs movement of the yeast vacuole[J]. Nature, 2003, 422(6927): 87-92.
[129] MEZIANE M, GENTHIAL R, VOGEL J. Kar9 symmetry breaking alone is insufficient to ensure spindle alignment[J]. Sci Rep, 2021, 11(1): 4227.
[130] KUMAR A, MEIER S M, FARCAS A M, et al. Structure and regulation of the microtubule plus-end tracking protein Kar9[J]. Structure, 2021, 29(11): 1266-1278 e1264.
[131] BEACH D L, THIBODEAUX J, MADDOX P, et al. The role of the proteins Kar9 and Myo2 in orienting the mitotic spindle of budding yeast[J]. Curr Biol, 2000, 10(23): 1497-1506.
[132] XIE Y, MIAO Y. Polarisome assembly mediates actin remodeling during polarized yeast and fungal growth[J]. J Cell Sci, 2021, 134(1).
[133] XIE Y, SUN J, HAN X, et al. Polarisome scaffolder Spa2-mediated macromolecular condensation of Aip5 for actin polymerization[J]. Nat Commun, 2019, 10(1): 5078.
[134] NAGANO M, TOSHIMA J Y, TOSHIMA J. [Rab GTPases networks in membrane traffic in Saccharomyces cerevisiae][J]. Yakugaku Zasshi, 2015, 135(3): 483-492.
[135] CHUNG S, TAKIZAWA P A. Multiple Myo4 motors enhance ASH1 mRNA transport in Saccharomyces cerevisiae[J]. J Cell Biol, 2010, 189(4): 755-767.
[136] DUNN B D, SAKAMOTO T, HONG M S, et al. Myo4p is a monomeric myosin with motility uniquely adapted to transport mRNA[J]. J Cell Biol, 2007, 178(7): 1193-1206.
[137] BERTRAND E, CHARTRAND P, SCHAEFER M, et al. Localization of ASH1 mRNA particles in living yeast[J]. Mol Cell, 1998, 2(4): 437-445.
[138] HODGES A R, KREMENTSOVA E B, TRYBUS K M. She3p binds to the rod of yeast myosin V and prevents it from dimerizing, forming a single-headed motor complex[J]. J Biol Chem, 2008, 283(11): 6906-6914.
[139] SLADEWSKI T E, BOOKWALTER C S, HONG M S, et al. Single-molecule reconstitution of mRNA transport by a class V myosin[J]. Nat Struct Mol Biol, 2013, 20(8): 952-957.
[140] HILL S M, HAO X, GRONVALL J, et al. Asymmetric Inheritance of Aggregated Proteins and Age Reset in Yeast Are Regulated by Vac17-Dependent Vacuolar Functions[J]. Cell Rep, 2016, 16(3): 826-838.
[141] DUNKLER A, LEDA M, KROMER J M, et al. Type V myosin focuses the polarisome and shapes the tip of yeast cells[J]. J Cell Biol, 2021, 220(5).
[142] LI X D, JUNG H S, WANG Q, et al. The globular tail domain puts on the brake to stop the ATPase cycle of myosin Va[J]. Proc Natl Acad Sci U S A, 2008, 105(4): 1140-1145.
[143] LI X D, JUNG H S, MABUCHI K, et al. The globular tail domain of myosin Va functions as an inhibitor of the myosin Va motor[J]. J Biol Chem, 2006, 281(31): 21789-21798.
[144] LIU J, TAYLOR D W, KREMENTSOVA E B, et al. Three-dimensional structure of the myosin V inhibited state by cryoelectron tomography[J]. Nature, 2006, 442(7099): 208-211.
[145] THIRUMURUGAN K, SAKAMOTO T, HAMMER J A, 3RD, et al. The cargo-binding domain regulates structure and activity of myosin 5[J]. Nature, 2006, 442(7099): 212-215.
[146] JIA Y, LI J. Molecular Assembly of Rotary and Linear Motor Proteins[J]. Acc Chem Res, 2019, 52(6): 1623-1631.
[147] NASCIMENTO A F Z, TRINDADE D M, TONOLI C C C, et al. Structural insights into functional overlapping and differentiation among myosin V motors[J]. J Biol Chem, 2013, 288(47): 34131-34145.
[148] LI X D, IKEBE R, IKEBE M. Activation of myosin Va function by melanophilin, a specific docking partner of myosin Va[J]. J Biol Chem, 2005, 280(18): 17815-17822.
[149] SCKOLNICK M, KREMENTSOVA E B, WARSHAW D M, et al. More than just a cargo adapter, melanophilin prolongs and slows processive runs of myosin Va[J]. J Biol Chem, 2013, 288(41): 29313-29322.
[150] YAO L L, CAO Q J, ZHANG H M, et al. Melanophilin Stimulates Myosin-5a Motor Function by Allosterically Inhibiting the Interaction between the Head and Tail of Myosin-5a[J]. Sci Rep, 2015, 5: 10874.
[151] SHEN M, ZHANG N, ZHENG S, et al. Calmodulin in complex with the first IQ motif of myosin-5a functions as an intact calcium sensor[J]. Proc Natl Acad Sci U S A, 2016, 113(40): E5812-E5820.
[152] KOIDE H, KINOSHITA T, TANAKA Y, et al. Identification of the single specific IQ motif of myosin V from which calmodulin dissociates in the presence of Ca2+[J]. Biochemistry, 2006, 45(38): 11598-11604.
[153] JUMPER J, EVANS R, PRITZEL A, et al. Highly accurate protein structure prediction with AlphaFold[J]. Nature, 2021, 596(7873): 583-589.
[154] OLECHNOVIC K, KULBERKYTE E, VENCLOVAS C. CAD-score: a new contact area difference-based function for evaluation of protein structural models[J]. Proteins, 2013, 81(1): 149-162.
[155] TANG G, PENG L, BALDWIN P R, et al. EMAN2: an extensible image processing suite for electron microscopy[J]. J Struct Biol, 2007, 157(1): 38-46.
[156] ROHOU A, GRIGORIEFF N. CTFFIND4: Fast and accurate defocus estimation from electron micrographs[J]. J Struct Biol, 2015, 192(2): 216-221.
[157] ZHENG S Q, PALOVCAK E, ARMACHE J P, et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy[J]. Nat Methods, 2017, 14(4): 331-332.
[158] PUNJANI A, RUBINSTEIN J L, FLEET D J, et al. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination[J]. Nat Methods, 2017, 14(3): 290-296.
[159] PETTERSEN E F, GODDARD T D, HUANG C C, et al. UCSF Chimera--a visualization system for exploratory research and analysis[J]. J Comput Chem, 2004, 25(13): 1605-1612.
[160] YANG F, YANG W. [Frontiers in structural biology][J]. Zhejiang Da Xue Xue Bao Yi Xue Ban, 2019, 48(1): 1-4.
[161] ALQURAISHI M. Protein-structure prediction revolutionized[J]. Nature, 2021, 596(7873): 487-488.
[162] JISNA V A, JAYARAJ P B. Protein Structure Prediction: Conventional and Deep Learning Perspectives[J]. Protein J, 2021, 40(4): 522-544.
[163] ALQURAISHI M. Machine learning in protein structure prediction[J]. Curr Opin Chem Biol, 2021, 65: 1-8.
[164] PAKHRIN S C, SHRESTHA B, ADHIKARI B, et al. Deep Learning-Based Advances in Protein Structure Prediction[J]. Int J Mol Sci, 2021, 22(11).
[165] HOSEINI P, ZHAO L, SHEHU A. Generative deep learning for macromolecular structure and dynamics[J]. Curr Opin Struct Biol, 2021, 67: 170-177.
[166] LAINE E, EISMANN S, ELOFSSON A, et al. Protein sequence-to-structure learning: Is this the end(-to-end revolution)?[J]. Proteins, 2021, 89(12): 1770-1786.
[167] DAVID A, ISLAM S, TANKHILEVICH E, et al. The AlphaFold Database of Protein Structures: A Biologist's Guide[J]. J Mol Biol, 2022, 434(2): 167336.
[168] OLECHNOVIC K, VENCLOVAS C. Contact Area-Based Structural Analysis of Proteins and Their Complexes Using CAD-Score[J]. Methods Mol Biol, 2020, 2112: 75-90.
[169] DAPKUNAS J, OLECHNOVIC K, VENCLOVAS C. Modeling of protein complexes in CASP14 with emphasis on the interaction interface prediction[J]. Proteins, 2021, 89(12): 1834-1843.
[170] EVES P T, JIN Y, BRUNNER M, et al. Overlap of cargo binding sites on myosin V coordinates the inheritance of diverse cargoes[J]. J Cell Biol, 2012, 198(1): 69-85.
[171] LWIN K M, LI D, BRETSCHER A. Kinesin-related Smy1 enhances the Rab-dependent association of myosin-V with secretory cargo[J]. Mol Biol Cell, 2016, 27(15): 2450-2462.
[172] DONOVAN K W, BRETSCHER A. Head-to-tail regulation is critical for the in vivo function of myosin V[J]. J Cell Biol, 2015, 209(3): 359-365.
[173] EMSLEY P, LOHKAMP B, SCOTT W G, et al. Features and development of Coot[J]. Acta Crystallogr D Biol Crystallogr, 2010, 66(Pt 4): 486-501.
[174] LIEBSCHNER D, AFONINE P V, BAKER M L, et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix[J]. Acta Crystallogr D Struct Biol, 2019, 75(Pt 10): 861-877.

所在学位评定分委会
生物系
国内图书分类号
Q344
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/420646
专题生命科学学院_生物系
推荐引用方式
GB/T 7714
刘永. Ⅴ型肌球蛋白的货物识别和活性调控的结构生物学研究[D]. 哈尔滨. 哈尔滨工业大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11849501-刘永-生物系.pdf(16034KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[刘永]的文章
百度学术
百度学术中相似的文章
[刘永]的文章
必应学术
必应学术中相似的文章
[刘永]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。