[1] KOLOMEISKY A B, FISHER M E. Molecular motors: a theorist's perspective[J]. Annu Rev Phys Chem, 2007, 58: 675-695.
[2] VALE R D. The molecular motor toolbox for intracellular transport[J]. Cell, 2003, 112(4): 467-480.
[3] VEIGEL C, SCHMIDT C F. Moving into the cell: single-molecule studies of molecular motors in complex environments[J]. Nat Rev Mol Cell Biol, 2011, 12(3): 163-176.
[4] HARTMAN M A, FINAN D, SIVARAMAKRISHNAN S, et al. Principles of unconventional myosin function and targeting[J]. Annu Rev Cell Dev Biol, 2011, 27: 133-155.
[5] HIROKAWA N, TAKEMURA R. Molecular motors and mechanisms of directional transport in neurons[J]. Nat Rev Neurosci, 2005, 6(3): 201-214.
[6] KOLOMEISKY A B. Motor proteins and molecular motors: how to operate machines at the nanoscale[J]. J Phys Condens Matter, 2013, 25(46): 463101.
[7] HIROKAWA N, NIWA S, TANAKA Y. Molecular motors in neurons: transport mechanisms and roles in brain function, development, and disease[J]. Neuron, 2010, 68(4): 610-638.
[8] MAVROIDIS C, DUBEY A, YARMUSH M L. Molecular machines[J]. Annu Rev Biomed Eng, 2004, 6: 363-395.
[9] HIROKAWA N, NODA Y, TANAKA Y, et al. Kinesin superfamily motor proteins and intracellular transport[J]. Nat Rev Mol Cell Biol, 2009, 10(10): 682-696.
[10] SWEENEY H L, HOLZBAUR E L F. Motor Proteins[J]. Cold Spring Harb Perspect Biol, 2018, 10(5).
[11] KRUPPA A J, BUSS F. Motor proteins at the mitochondria-cytoskeleton interface[J]. J Cell Sci, 2021, 134(7).
[12] TITUS M A. Myosin-Driven Intracellular Transport[J]. Cold Spring Harb Perspect Biol, 2018, 10(3).
[13] TAFT M H, LATHAM S L. Myosin XVIII[J]. Adv Exp Med Biol, 2020, 1239: 421-438.
[14] BUGYI B, KENGYEL A. Myosin XVI[J]. Adv Exp Med Biol, 2020, 1239: 405-419.
[15] MAGISTRATI E, POLO S. Myomics: myosin VI structural and functional plasticity[J]. Curr Opin Struct Biol, 2021, 67: 33-40.
[16] WONG S, WEISMAN L S. Roles and regulation of myosin V interaction with cargo[J]. Adv Biol Regul, 2021, 79: 100787.
[17] HAMMER J A, 3RD, SELLERS J R. Walking to work: roles for class V myosins as cargo transporters[J]. Nat Rev Mol Cell Biol, 2011, 13(1): 13-26.
[18] MEHTA A D, ROCK R S, RIEF M, et al. Myosin-V is a processive actin-based motor[J]. Nature, 1999, 400(6744): 590-593.
[19] MIKLAVC P, FRICK M. Actin and Myosin in Non-Neuronal Exocytosis[J]. Cells, 2020, 9(6).
[20] MALY I V, HOFMANN W A. Myosins in the Nucleus[J]. Adv Exp Med Biol, 2020, 1239: 199-231.
[21] XUE R, MENG H, YIN J, et al. The Role of Calmodulin vs. Synaptotagmin in Exocytosis[J]. Front Mol Neurosci, 2021, 14: 691363.
[22] HOUDUSSE A, TITUS M A. The many roles of myosins in filopodia, microvilli and stereocilia[J]. Curr Biol, 2021, 31(10): R586-R602.
[23] PASTURAL E, BARRAT F J, DUFOURCQ-LAGELOUSE R, et al. Griscelli disease maps to chromosome 15q21 and is associated with mutations in the myosin-Va gene[J]. Nat Genet, 1997, 16(3): 289-292.
[24] MULLER T, HESS M W, SCHIEFERMEIER N, et al. MYO5B mutations cause microvillus inclusion disease and disrupt epithelial cell polarity[J]. Nat Genet, 2008, 40(10): 1163-1165.
[25] VAN GELE M, DYNOODT P, LAMBERT J. Griscelli syndrome: a model system to study vesicular trafficking[J]. Pigment Cell Melanoma Res, 2009, 22(3): 268-282.
[26] TANG K, LI Y, YU C, et al. Structural mechanism for versatile cargo recognition by the yeast class V myosin Myo2[J]. J Biol Chem, 2019, 294(15): 5896-5906.
[27] WEI Z, LIU X, YU C, et al. Structural basis of cargo recognitions for class V myosins[J]. Proc Natl Acad Sci U S A, 2013, 110(28): 11314-11319.
[28] RECK-PETERSON S L, PROVANCE D W, JR., MOOSEKER M S, et al. Class V myosins[J]. Biochim Biophys Acta, 2000, 1496(1): 36-51.
[29] WONG S, WEISMAN L S. Let it go: mechanisms that detach myosin V from the yeast vacuole[J]. Curr Genet, 2021, 67(6): 865-869.
[30] LI J, ZHANG M. Cargo Binding by Unconventional Myosins[J]. Adv Exp Med Biol, 2020, 1239: 21-40.
[31] LI X D, MABUCHI K, IKEBE R, et al. Ca2+-induced activation of ATPase activity of myosin Va is accompanied with a large conformational change[J]. Biochem Biophys Res Commun, 2004, 315(3): 538-545.
[32] WANG F, THIRUMURUGAN K, STAFFORD W F, et al. Regulated conformation of myosin V[J]. J Biol Chem, 2004, 279(4): 2333-2336.
[33] KREMENTSOV D N, KREMENTSOVA E B, TRYBUS K M. Myosin V: regulation by calcium, calmodulin, and the tail domain[J]. J Cell Biol, 2004, 164(6): 877-886.
[34] ZHANG N, YAO L L, LI X D. Regulation of class V myosin[J]. Cell Mol Life Sci, 2018, 75(2): 261-273.
[35] MIRDITA M, SCHUTZE K, MORIWAKI Y, et al. ColabFold: making protein folding accessible to all[J]. Nat Methods, 2022, 19(6): 679-682.
[36] BARLAN K, GELFAND V I. Microtubule-Based Transport and the Distribution, Tethering, and Organization of Organelles[J]. Cold Spring Harb Perspect Biol, 2017, 9(5).
[37] HOWARD J. Jonathon Howard[J]. Trends Cell Biol, 2001, 11(11): 452-453.
[38] KANNING K C, KAPLAN A, HENDERSON C E. Motor neuron diversity in development and disease[J]. Annu Rev Neurosci, 2010, 33: 409-440.
[39] RUFFOLI R, BIAGIONI F, BUSCETI C L, et al. Neurons other than motor neurons in motor neuron disease[J]. Histol Histopathol, 2017, 32(11): 1115-1123.
[40] ARBER S. Motor circuits in action: specification, connectivity, and function[J]. Neuron, 2012, 74(6): 975-989.
[41] KABSCH W, MANNHERZ H G, SUCK D, et al. Atomic structure of the actin:DNase I complex[J]. Nature, 1990, 347(6288): 37-44.
[42] KHAITLINA S Y. Intracellular transport based on actin polymerization[J]. Biochemistry (Mosc), 2014, 79(9): 917-927.
[43] SCHAKS M, GIANNONE G, ROTTNER K. Actin dynamics in cell migration[J]. Essays Biochem, 2019, 63(5): 483-495.
[44] LJUBOJEVIC N, HENDERSON J M, ZURZOLO C. The Ways of Actin: Why Tunneling Nanotubes Are Unique Cell Protrusions[J]. Trends Cell Biol, 2021, 31(2): 130-142.
[45] POLLARD T D. Actin and Actin-Binding Proteins[J]. Cold Spring Harb Perspect Biol, 2016, 8(8).
[46] WANG L, CHITANO P, SEOW C Y. Filament evanescence of myosin II and smooth muscle function[J]. J Gen Physiol, 2021, 153(3).
[47] MISHRA M, KASHIWAZAKI J, TAKAGI T, et al. In vitro contraction of cytokinetic ring depends on myosin II but not on actin dynamics[J]. Nat Cell Biol, 2013, 15(7): 853-859.
[48] BERG J S, POWELL B C, CHENEY R E. A millennial myosin census[J]. Mol Biol Cell, 2001, 12(4): 780-794.
[49] YANG S, TIWARI P, LEE K H, et al. Cryo-EM structure of the inhibited (10S) form of myosin II[J]. Nature, 2020, 588(7838): 521-525.
[50] HEISSLER S M, ARORA A S, BILLINGTON N, et al. Cryo-EM structure of the autoinhibited state of myosin-2[J]. Sci Adv, 2021, 7(52): eabk3273.
[51] PORRO C, PENNELLA A, PANARO M A, et al. Functional Role of Non-Muscle Myosin II in Microglia: An Updated Review[J]. Int J Mol Sci, 2021, 22(13).
[52] LI J, LU Q, ZHANG M. Structural Basis of Cargo Recognition by Unconventional Myosins in Cellular Trafficking[J]. Traffic, 2016, 17(8): 822-838.
[53] FILI N, TOSELAND C P. Unconventional Myosins: How Regulation Meets Function[J]. Int J Mol Sci, 2019, 21(1).
[54] FOTH B J, GOEDECKE M C, SOLDATI D. New insights into myosin evolution and classification[J]. Proc Natl Acad Sci U S A, 2006, 103(10): 3681-3686.
[55] ODRONITZ F, KOLLMAR M. Drawing the tree of eukaryotic life based on the analysis of 2,269 manually annotated myosins from 328 species[J]. Genome Biol, 2007, 8(9): R196.
[56] BOCANEGRA J L, ADIKES R, QUINTERO O A. Myosin XIX[J]. Adv Exp Med Biol, 2020, 1239: 439-451.
[57] PROVANCE D W, MERCER J A. Myosin-V: head to tail[J]. Cell Mol Life Sci, 1999, 56(3-4): 233-242.
[58] TRYBUS K M. Myosin V from head to tail[J]. Cell Mol Life Sci, 2008, 65(9): 1378-1389.
[59] TANAKA H, HOMMA K, IWANE A H, et al. The motor domain determines the large step of myosin-V[J]. Nature, 2002, 415(6868): 192-195.
[60] KODERA N, ANDO T. The path to visualization of walking myosin V by high-speed atomic force microscopy[J]. Biophys Rev, 2014, 6(3-4): 237-260.
[61] SWEENEY H L, HOUDUSSE A. Myosin VI rewrites the rules for myosin motors[J]. Cell, 2010, 141(4): 573-582.
[62] YU C, FENG W, WEI Z, et al. Myosin VI undergoes cargo-mediated dimerization[J]. Cell, 2009, 138(3): 537-548.
[63] LEWIS J H, BEAUSANG J F, SWEENEY H L, et al. The azimuthal path of myosin V and its dependence on lever-arm length[J]. J Gen Physiol, 2012, 139(2): 101-120.
[64] SATO O, JUNG H S, KOMATSU S, et al. Activated full-length myosin-X moves processively on filopodia with large steps toward diverse two-dimensional directions[J]. Sci Rep, 2017, 7: 44237.
[65] IKEZAKI K, KOMORI T, ARAI Y, et al. Lever arm extension of myosin VI is unnecessary for the adjacent binding state[J]. Biophysics (Nagoya-shi), 2015, 11: 47-53.
[66] HEISSLER S M, SELLERS J R. Myosin light chains: Teaching old dogs new tricks[J]. Bioarchitecture, 2014, 4(6): 169-188.
[67] RAHMANI H, MA W, HU Z, et al. The myosin II coiled-coil domain atomic structure in its native environment[J]. Proc Natl Acad Sci U S A, 2021, 118(14).
[68] CHENEY R E, O'SHEA M K, HEUSER J E, et al. Brain myosin-V is a two-headed unconventional myosin with motor activity[J]. Cell, 1993, 75(1): 13-23.
[69] KRENDEL M, MOOSEKER M S. Myosins: tails (and heads) of functional diversity[J]. Physiology (Bethesda), 2005, 20: 239-251.
[70] LU Q, LI J, ZHANG M. Cargo recognition and cargo-mediated regulation of unconventional myosins[J]. Acc Chem Res, 2014, 47(10): 3061-3070.
[71] MULLER R T, HONNERT U, REINHARD J, et al. The rat myosin myr 5 is a GTPase-activating protein for Rho in vivo: essential role of arginine 1695[J]. Mol Biol Cell, 1997, 8(10): 2039-2053.
[72] POST P L, BOKOCH G M, MOOSEKER M S. Human myosin-IXb is a mechanochemically active motor and a GAP for rho[J]. J Cell Sci, 1998, 111 ( Pt 7): 941-950.
[73] KODERA N, ANDO T. High-Speed Atomic Force Microscopy to Study Myosin Motility[J]. Adv Exp Med Biol, 2020, 1239: 127-152.
[74] ROBERT-PAGANIN J, PYLYPENKO O, KIKUTI C, et al. Force Generation by Myosin Motors: A Structural Perspective[J]. Chem Rev, 2020, 120(1): 5-35.
[75] GUHATHAKURTA P, PROCHNIEWICZ E, THOMAS D D. Actin-Myosin Interaction: Structure, Function and Drug Discovery[J]. Int J Mol Sci, 2018, 19(9).
[76] DORAN M H, LEHMAN W. The Central Role of the F-Actin Surface in Myosin Force Generation[J]. Biology (Basel), 2021, 10(12).
[77] EWERT W, FRANZ P, TSIAVALIARIS G, et al. Structural and Computational Insights into a Blebbistatin-Bound Myosin*ADP Complex with Characteristics of an ADP-Release Conformation along the Two-Step Myosin Power Stoke[J]. Int J Mol Sci, 2020, 21(19).
[78] LYMN R W, TAYLOR E W. Mechanism of adenosine triphosphate hydrolysis by actomyosin[J]. Biochemistry, 1971, 10(25): 4617-4624.
[79] NAGY N T, SAKAMOTO T, TAKACS B, et al. Functional adaptation of the switch-2 nucleotide sensor enables rapid processive translocation by myosin-5[J]. FASEB J, 2010, 24(11): 4480-4490.
[80] GUNTHER L K, ROHDE J A, TANG W, et al. Converter domain mutations in myosin alter structural kinetics and motor function[J]. J Biol Chem, 2019, 294(5): 1554-1567.
[81] LARSON R E. Myosin-V: a class of unconventional molecular motors[J]. Braz J Med Biol Res, 1996, 29(3): 309-318.
[82] BANERJEE C, HU Z, HUANG Z, et al. The structure of the actin-smooth muscle myosin motor domain complex in the rigor state[J]. J Struct Biol, 2017, 200(3): 325-333.
[83] COUREUX P D, SWEENEY H L, HOUDUSSE A. Three myosin V structures delineate essential features of chemo-mechanical transduction[J]. EMBO J, 2004, 23(23): 4527-4537.
[84] ESPINDOLA F S, SUTER D M, PARTATA L B, et al. The light chain composition of chicken brain myosin-Va: calmodulin, myosin-II essential light chains, and 8-kDa dynein light chain/PIN[J]. Cell Motil Cytoskeleton, 2000, 47(4): 269-281.
[85] HOUDUSSE A, GAUCHER J F, KREMENTSOVA E, et al. Crystal structure of apo-calmodulin bound to the first two IQ motifs of myosin V reveals essential recognition features[J]. Proc Natl Acad Sci U S A, 2006, 103(51): 19326-19331.
[86] TYSKA M J, MOOSEKER M S. Myosin-V motility: these levers were made for walking[J]. Trends Cell Biol, 2003, 13(9): 447-451.
[87] HOMMA K, SAITO J, IKEBE R, et al. Ca(2+)-dependent regulation of the motor activity of myosin V[J]. J Biol Chem, 2000, 275(44): 34766-34771.
[88] WAGNER W, FODOR E, GINSBURG A, et al. The binding of DYNLL2 to myosin Va requires alternatively spliced exon B and stabilizes a portion of the myosin's coiled-coil domain[J]. Biochemistry, 2006, 45(38): 11564-11577.
[89] ZHANG W B, YAO L L, LI X D. The Globular Tail Domain of Myosin-5a Functions as a Dimer in Regulating the Motor Activity[J]. J Biol Chem, 2016, 291(26): 13571-13579.
[90] PYLYPENKO O, WELZ T, TITTEL J, et al. Coordinated recruitment of Spir actin nucleators and myosin V motors to Rab11 vesicle membranes[J]. Elife, 2016, 5.
[91] PYLYPENKO O, ATTANDA W, GAUQUELIN C, et al. Structural basis of myosin V Rab GTPase-dependent cargo recognition[J]. Proc Natl Acad Sci U S A, 2013, 110(51): 20443-20448.
[92] NIU F, SUN K, WEI W, et al. F-actin disassembly factor MICAL1 binding to Myosin Va mediates cargo unloading during cytokinesis[J]. Sci Adv, 2020, 6(45).
[93] AU J S, HUANG J D. A tissue-specific exon of myosin Va is responsible for selective cargo binding in melanocytes[J]. Cell Motil Cytoskeleton, 2002, 53(2): 89-102.
[94] MCCAFFREY M W, LINDSAY A J. Roles for myosin Va in RNA transport and turnover[J]. Biochem Soc Trans, 2012, 40(6): 1416-1420.
[95] WELZ T, KERKHOFF E. Exploring the iceberg: Prospects of coordinated myosin V and actin assembly functions in transport processes[J]. Small GTPases, 2019, 10(2): 111-121.
[96] KONCINA E, LETELLIER E. Myosins: Driving us towards novel targets and biomarkers in cancer[J]. Int Rev Cell Mol Biol, 2020, 356: 291-322.
[97] GROSSHANS B L, ORTIZ D, NOVICK P. Rabs and their effectors: achieving specificity in membrane traffic[J]. Proc Natl Acad Sci U S A, 2006, 103(32): 11821-11827.
[98] LANGEMEYER L, FROHLICH F, UNGERMANN C. Rab GTPase Function in Endosome and Lysosome Biogenesis[J]. Trends Cell Biol, 2018, 28(11): 957-970.
[99] HOMMA Y, HIRAGI S, FUKUDA M. Rab family of small GTPases: an updated view on their regulation and functions[J]. FEBS J, 2021, 288(1): 36-55.
[100] BORCHERS A C, LANGEMEYER L, UNGERMANN C. Who's in control? Principles of Rab GTPase activation in endolysosomal membrane trafficking and beyond[J]. J Cell Biol, 2021, 220(9).
[101] MIMA J. Reconstitution of membrane tethering mediated by Rab-family small GTPases[J]. Biophys Rev, 2018, 10(2): 543-549.
[102] MIMA J. Self-assemblies of Rab- and Arf-family small GTPases on lipid bilayers in membrane tethering[J]. Biophys Rev, 2021, 13(4): 531-539.
[103] KASSEM YOUSSEF H, RAMSTEIN C, GINGLINGER E, et al. [Griscelli syndrome type 3: A new case][J]. Ann Dermatol Venereol, 2018, 145(12): 785-789.
[104] MERCER J A, SEPERACK P K, STROBEL M C, et al. Novel myosin heavy chain encoded by murine dilute coat colour locus[J]. Nature, 1991, 349(6311): 709-713.
[105] OMAR-HMEADI M, IDEVALL-HAGREN O. Insulin granule biogenesis and exocytosis[J]. Cell Mol Life Sci, 2021, 78(5): 1957-1970.
[106] FRANCHINI L, STANIC J, BARZASI M, et al. Rabphilin-3A Drives Structural Modifications of Dendritic Spines Induced by Long-Term Potentiation[J]. Cells, 2022, 11(10).
[107] LISE M F, SRIVASTAVA D P, ARSTIKAITIS P, et al. Myosin-Va-interacting protein, RILPL2, controls cell shape and neuronal morphogenesis via Rac signaling[J]. J Cell Sci, 2009, 122(Pt 20): 3810-3821.
[108] NAMGOONG S, KIM N H. Roles of actin binding proteins in mammalian oocyte maturation and beyond[J]. Cell Cycle, 2016, 15(14): 1830-1843.
[109] HOLTHENRICH A, TERGLANE J, NASS J, et al. Spire1 and Myosin Vc promote Ca(2+)-evoked externalization of von Willebrand factor in endothelial cells[J]. Cell Mol Life Sci, 2022, 79(2): 96.
[110] MCGARRY D J, ARMSTRONG G, CASTINO G, et al. MICAL1 regulates actin cytoskeleton organization, directional cell migration and the growth of human breast cancer cells as orthotopic xenograft tumours[J]. Cancer Lett, 2021, 519: 226-236.
[111] HAIKAZIAN S, OLSON M F. MICAL1 Monooxygenase in Autosomal Dominant Lateral Temporal Epilepsy: Role in Cytoskeletal Regulation and Relation to Cancer[J]. Genes (Basel), 2022, 13(5).
[112] SCHIEL J A, SIMON G C, ZAHARRIS C, et al. FIP3-endosome-dependent formation of the secondary ingression mediates ESCRT-III recruitment during cytokinesis[J]. Nat Cell Biol, 2012, 14(10): 1068-1078.
[113] KURODA T S, ARIGA H, FUKUDA M. The actin-binding domain of Slac2-a/melanophilin is required for melanosome distribution in melanocytes[J]. Mol Cell Biol, 2003, 23(15): 5245-5255.
[114] WU X S, RAO K, ZHANG H, et al. Identification of an organelle receptor for myosin-Va[J]. Nat Cell Biol, 2002, 4(4): 271-278.
[115] JI H H, YAO L L, LIU C, et al. Regulation of Myosin-5b by Rab11a and the Rab11 family interacting protein 2[J]. Biosci Rep, 2019, 39(1).
[116] BACH S, COLAS P, BLONDEL M. [Budding yeast, a model and a tool... also for biomedical research][J]. Med Sci (Paris), 2020, 36(5): 504-514.
[117] FISCHER G, LITI G, LLORENTE B. The budding yeast life cycle: More complex than anticipated?[J]. Yeast, 2021, 38(1): 5-11.
[118] FRIEND J E, SAYYAD W A, ARASADA R, et al. Fission yeast Myo2: Molecular organization and diffusion in the cytoplasm[J]. Cytoskeleton (Hoboken), 2018, 75(4): 164-173.
[119] ALTMANN K, FRANK M, NEUMANN D, et al. The class V myosin motor protein, Myo2, plays a major role in mitochondrial motility in Saccharomyces cerevisiae[J]. J Cell Biol, 2008, 181(1): 119-130.
[120] GINGRAS R M, LWIN K M, MILLER A M, et al. Yeast Rgd3 is a phospho-regulated F-BAR-containing RhoGAP involved in the regulation of Rho3 distribution and cell morphology[J]. Mol Biol Cell, 2020, 31(23): 2570-2582.
[121] CHESARONE-CATALDO M, GUERIN C, YU J H, et al. The myosin passenger protein Smy1 controls actin cable structure and dynamics by acting as a formin damper[J]. Dev Cell, 2011, 21(2): 217-230.
[122] CHERNYAKOV I, SANTIAGO-TIRADO F, BRETSCHER A. Active segregation of yeast mitochondria by Myo2 is essential and mediated by Mmr1 and Ypt11[J]. Curr Biol, 2013, 23(18): 1818-1824.
[123] KRIKKEN A M, WU H, DE BOER R, et al. Peroxisome retention involves Inp1-dependent peroxisome-plasma membrane contact sites in yeast[J]. J Cell Biol, 2020, 219(10).
[124] FAGARASANU M, FAGARASANU A, RACHUBINSKI R A. Sharing the wealth: peroxisome inheritance in budding yeast[J]. Biochim Biophys Acta, 2006, 1763(12): 1669-1677.
[125] BOLDOGH I R, FEHRENBACHER K L, YANG H C, et al. Mitochondrial movement and inheritance in budding yeast[J]. Gene, 2005, 354: 28-36.
[126] SARAYA R, CEPINSKA M N, KIEL J A, et al. A conserved function for Inp2 in peroxisome inheritance[J]. Biochim Biophys Acta, 2010, 1803(5): 617-622.
[127] WONG S, HEPOWIT N L, PORT S A, et al. Cargo Release from Myosin V Requires the Convergence of Parallel Pathways that Phosphorylate and Ubiquitylate the Cargo Adaptor[J]. Curr Biol, 2020, 30(22): 4399-4412 e4397.
[128] TANG F, KAUFFMAN E J, NOVAK J L, et al. Regulated degradation of a class V myosin receptor directs movement of the yeast vacuole[J]. Nature, 2003, 422(6927): 87-92.
[129] MEZIANE M, GENTHIAL R, VOGEL J. Kar9 symmetry breaking alone is insufficient to ensure spindle alignment[J]. Sci Rep, 2021, 11(1): 4227.
[130] KUMAR A, MEIER S M, FARCAS A M, et al. Structure and regulation of the microtubule plus-end tracking protein Kar9[J]. Structure, 2021, 29(11): 1266-1278 e1264.
[131] BEACH D L, THIBODEAUX J, MADDOX P, et al. The role of the proteins Kar9 and Myo2 in orienting the mitotic spindle of budding yeast[J]. Curr Biol, 2000, 10(23): 1497-1506.
[132] XIE Y, MIAO Y. Polarisome assembly mediates actin remodeling during polarized yeast and fungal growth[J]. J Cell Sci, 2021, 134(1).
[133] XIE Y, SUN J, HAN X, et al. Polarisome scaffolder Spa2-mediated macromolecular condensation of Aip5 for actin polymerization[J]. Nat Commun, 2019, 10(1): 5078.
[134] NAGANO M, TOSHIMA J Y, TOSHIMA J. [Rab GTPases networks in membrane traffic in Saccharomyces cerevisiae][J]. Yakugaku Zasshi, 2015, 135(3): 483-492.
[135] CHUNG S, TAKIZAWA P A. Multiple Myo4 motors enhance ASH1 mRNA transport in Saccharomyces cerevisiae[J]. J Cell Biol, 2010, 189(4): 755-767.
[136] DUNN B D, SAKAMOTO T, HONG M S, et al. Myo4p is a monomeric myosin with motility uniquely adapted to transport mRNA[J]. J Cell Biol, 2007, 178(7): 1193-1206.
[137] BERTRAND E, CHARTRAND P, SCHAEFER M, et al. Localization of ASH1 mRNA particles in living yeast[J]. Mol Cell, 1998, 2(4): 437-445.
[138] HODGES A R, KREMENTSOVA E B, TRYBUS K M. She3p binds to the rod of yeast myosin V and prevents it from dimerizing, forming a single-headed motor complex[J]. J Biol Chem, 2008, 283(11): 6906-6914.
[139] SLADEWSKI T E, BOOKWALTER C S, HONG M S, et al. Single-molecule reconstitution of mRNA transport by a class V myosin[J]. Nat Struct Mol Biol, 2013, 20(8): 952-957.
[140] HILL S M, HAO X, GRONVALL J, et al. Asymmetric Inheritance of Aggregated Proteins and Age Reset in Yeast Are Regulated by Vac17-Dependent Vacuolar Functions[J]. Cell Rep, 2016, 16(3): 826-838.
[141] DUNKLER A, LEDA M, KROMER J M, et al. Type V myosin focuses the polarisome and shapes the tip of yeast cells[J]. J Cell Biol, 2021, 220(5).
[142] LI X D, JUNG H S, WANG Q, et al. The globular tail domain puts on the brake to stop the ATPase cycle of myosin Va[J]. Proc Natl Acad Sci U S A, 2008, 105(4): 1140-1145.
[143] LI X D, JUNG H S, MABUCHI K, et al. The globular tail domain of myosin Va functions as an inhibitor of the myosin Va motor[J]. J Biol Chem, 2006, 281(31): 21789-21798.
[144] LIU J, TAYLOR D W, KREMENTSOVA E B, et al. Three-dimensional structure of the myosin V inhibited state by cryoelectron tomography[J]. Nature, 2006, 442(7099): 208-211.
[145] THIRUMURUGAN K, SAKAMOTO T, HAMMER J A, 3RD, et al. The cargo-binding domain regulates structure and activity of myosin 5[J]. Nature, 2006, 442(7099): 212-215.
[146] JIA Y, LI J. Molecular Assembly of Rotary and Linear Motor Proteins[J]. Acc Chem Res, 2019, 52(6): 1623-1631.
[147] NASCIMENTO A F Z, TRINDADE D M, TONOLI C C C, et al. Structural insights into functional overlapping and differentiation among myosin V motors[J]. J Biol Chem, 2013, 288(47): 34131-34145.
[148] LI X D, IKEBE R, IKEBE M. Activation of myosin Va function by melanophilin, a specific docking partner of myosin Va[J]. J Biol Chem, 2005, 280(18): 17815-17822.
[149] SCKOLNICK M, KREMENTSOVA E B, WARSHAW D M, et al. More than just a cargo adapter, melanophilin prolongs and slows processive runs of myosin Va[J]. J Biol Chem, 2013, 288(41): 29313-29322.
[150] YAO L L, CAO Q J, ZHANG H M, et al. Melanophilin Stimulates Myosin-5a Motor Function by Allosterically Inhibiting the Interaction between the Head and Tail of Myosin-5a[J]. Sci Rep, 2015, 5: 10874.
[151] SHEN M, ZHANG N, ZHENG S, et al. Calmodulin in complex with the first IQ motif of myosin-5a functions as an intact calcium sensor[J]. Proc Natl Acad Sci U S A, 2016, 113(40): E5812-E5820.
[152] KOIDE H, KINOSHITA T, TANAKA Y, et al. Identification of the single specific IQ motif of myosin V from which calmodulin dissociates in the presence of Ca2+[J]. Biochemistry, 2006, 45(38): 11598-11604.
[153] JUMPER J, EVANS R, PRITZEL A, et al. Highly accurate protein structure prediction with AlphaFold[J]. Nature, 2021, 596(7873): 583-589.
[154] OLECHNOVIC K, KULBERKYTE E, VENCLOVAS C. CAD-score: a new contact area difference-based function for evaluation of protein structural models[J]. Proteins, 2013, 81(1): 149-162.
[155] TANG G, PENG L, BALDWIN P R, et al. EMAN2: an extensible image processing suite for electron microscopy[J]. J Struct Biol, 2007, 157(1): 38-46.
[156] ROHOU A, GRIGORIEFF N. CTFFIND4: Fast and accurate defocus estimation from electron micrographs[J]. J Struct Biol, 2015, 192(2): 216-221.
[157] ZHENG S Q, PALOVCAK E, ARMACHE J P, et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy[J]. Nat Methods, 2017, 14(4): 331-332.
[158] PUNJANI A, RUBINSTEIN J L, FLEET D J, et al. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination[J]. Nat Methods, 2017, 14(3): 290-296.
[159] PETTERSEN E F, GODDARD T D, HUANG C C, et al. UCSF Chimera--a visualization system for exploratory research and analysis[J]. J Comput Chem, 2004, 25(13): 1605-1612.
[160] YANG F, YANG W. [Frontiers in structural biology][J]. Zhejiang Da Xue Xue Bao Yi Xue Ban, 2019, 48(1): 1-4.
[161] ALQURAISHI M. Protein-structure prediction revolutionized[J]. Nature, 2021, 596(7873): 487-488.
[162] JISNA V A, JAYARAJ P B. Protein Structure Prediction: Conventional and Deep Learning Perspectives[J]. Protein J, 2021, 40(4): 522-544.
[163] ALQURAISHI M. Machine learning in protein structure prediction[J]. Curr Opin Chem Biol, 2021, 65: 1-8.
[164] PAKHRIN S C, SHRESTHA B, ADHIKARI B, et al. Deep Learning-Based Advances in Protein Structure Prediction[J]. Int J Mol Sci, 2021, 22(11).
[165] HOSEINI P, ZHAO L, SHEHU A. Generative deep learning for macromolecular structure and dynamics[J]. Curr Opin Struct Biol, 2021, 67: 170-177.
[166] LAINE E, EISMANN S, ELOFSSON A, et al. Protein sequence-to-structure learning: Is this the end(-to-end revolution)?[J]. Proteins, 2021, 89(12): 1770-1786.
[167] DAVID A, ISLAM S, TANKHILEVICH E, et al. The AlphaFold Database of Protein Structures: A Biologist's Guide[J]. J Mol Biol, 2022, 434(2): 167336.
[168] OLECHNOVIC K, VENCLOVAS C. Contact Area-Based Structural Analysis of Proteins and Their Complexes Using CAD-Score[J]. Methods Mol Biol, 2020, 2112: 75-90.
[169] DAPKUNAS J, OLECHNOVIC K, VENCLOVAS C. Modeling of protein complexes in CASP14 with emphasis on the interaction interface prediction[J]. Proteins, 2021, 89(12): 1834-1843.
[170] EVES P T, JIN Y, BRUNNER M, et al. Overlap of cargo binding sites on myosin V coordinates the inheritance of diverse cargoes[J]. J Cell Biol, 2012, 198(1): 69-85.
[171] LWIN K M, LI D, BRETSCHER A. Kinesin-related Smy1 enhances the Rab-dependent association of myosin-V with secretory cargo[J]. Mol Biol Cell, 2016, 27(15): 2450-2462.
[172] DONOVAN K W, BRETSCHER A. Head-to-tail regulation is critical for the in vivo function of myosin V[J]. J Cell Biol, 2015, 209(3): 359-365.
[173] EMSLEY P, LOHKAMP B, SCOTT W G, et al. Features and development of Coot[J]. Acta Crystallogr D Biol Crystallogr, 2010, 66(Pt 4): 486-501.
[174] LIEBSCHNER D, AFONINE P V, BAKER M L, et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix[J]. Acta Crystallogr D Struct Biol, 2019, 75(Pt 10): 861-877.
修改评论