中文版 | English
题名

EphA4-Fc在小鼠脑中动脉局灶缺血中神经保护作用的研究

其他题名
THE NEUROPROTECTIVE EFFECT OF EPHA4- FC IN MOUSE MODEL OF FOCAL CEREBRAL ARTERY ISCHEMIA/REPERFUSION
姓名
姓名拼音
SHA Weimeng
学号
11930135
学位类型
硕士
学位专业
071006 神经生物学
学科门类/专业学位类别
07 理学
导师
侯圣陶
导师单位
生物系
论文答辩日期
2022-10-27
论文提交日期
2023-01-06
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

EphA4参与调节脑缺血/再灌注后的损伤,之前并未有研究说明其作用机制。在本研究中,我们发现EphA4-Fc可以竞争性抑制EphA4,在大脑中动脉缺血(MCAO)小鼠模型中具有显著的神经保护作用。小鼠MCAO手术之前或之后接受EphA4-Fc治疗,可在2472小时后显著减少约10%的缺血性脑水肿。与此同时,脑梗塞面积也减少了10-30%,而且神经评分也得到了明显的改善。我们的结果表明,EphA4-Fc治疗后导致内皮细胞通透性的变化和脑水肿的减少。我们使用了原代血管内皮细胞进行了体外实验,结果表明EphA4-Fc抑制了应力纤维的形成,并在缺氧-葡萄糖剥夺和再灌注治疗期间保持紧密连接的完整性。上述结果表明,抑制EphA4的激活在维持内皮细胞膜形态完整性方面起着关键作用,EphA4-FcEphA4介导的内皮细胞功能丧失的有效阻断剂,并且EphA4-Fc的治疗可以有效降低脑缺血后水肿和脑梗塞的程度。由于EphA4-Fc最近在人类I期试验中表现出良好的耐受性,本研究的结果表明,它在人类中风的治疗应用中具有潜力。EphA4参与调节脑缺血/再灌注后的损伤,之前并未有研究说明其作用机制。在本研究中,我们发现EphA4-Fc可以竞争性抑制EphA4,在大脑中动脉缺血(MCAO)小鼠模型中具有显著的神经保护作用。小鼠MCAO手术之前或之后接受EphA4-Fc治疗,可在2472小时后显著减少约10%的缺血性脑水肿。与此同时,脑梗塞面积也减少了10-30%,而且神经评分也得到了明显的改善。我们的结果表明,EphA4-Fc治疗后导致内皮细胞通透性的变化和脑水肿的减少。我们使用了原代血管内皮细胞进行了体外实验,结果表明EphA4-Fc抑制了应力纤维的形成,并在缺氧-葡萄糖剥夺和再灌注治疗期间保持紧密连接的完整性。上述结果表明,抑制EphA4的激活在维持内皮细胞膜形态完整性方面起着关键作用,EphA4-FcEphA4介导的内皮细胞功能丧失的有效阻断剂,并且EphA4-Fc的治疗可以有效降低脑缺血后水肿和脑梗塞的程度。由于EphA4-Fc最近在人类I期试验中表现出良好的耐受性,本研究的结果表明,它在人类中风的治疗应用中具有潜力。

关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2022-12
参考文献列表

[1] E. J. Benjamin et al., “Heart Disease and Stroke Statistics—2017 Update: A Report From the American Heart Association,” Circulation, vol. 135, no. 10, Mar. 2017, doi: 10.1161/CIR.0000000000000485.
[2] D. W. Choi and S. M. Rothman, “The Role of Glutamate Neurotoxicity in Hypoxic-Ischemic Neuronal Death,” Annu Rev Neurosci, vol. 13, no. 1, pp. 171–182, Mar. 1990, doi: 10.1146/annurev.ne.13.030190.001131.
[3] C. Yang, K. E. Hawkins, S. Doré, and E. Candelario-Jalil, “Neuroinflammatory mechanisms of blood-brain barrier damage in ischemic stroke,” American Journal of Physiology-Cell Physiology, vol. 316, no. 2, pp. C135–C153, Feb. 2019, doi: 10.1152/ajpcell.00136.2018.
[4] M. R. Halstead and R. G. Geocadin, “The Medical Management of Cerebral Edema: Past, Present, and Future Therapies,” Neurotherapeutics, vol. 16, no. 4, pp. 1133–1148, Oct. 2019, doi: 10.1007/s13311-019-00779-4.
[5] T. Clément, B. Rodriguez-Grande, and J. Badaut, “Aquaporins in brain edema,” J Neurosci Res, vol. 98, no. 1, pp. 9–18, Jan. 2020, doi: 10.1002/jnr.24354.
[6] N. J. Abbott, L. Rönnbäck, and E. Hansson, “Astrocyte–endothelial interactions at the blood–brain barrier,” Nat Rev Neurosci, vol. 7, no. 1, pp. 41–53, Jan. 2006, doi: 10.1038/nrn1824.
[7] D. J. Begley and M. W. Brightman, “Structural and functional aspects of the blood-brain barrier,” in Peptide Transport and Delivery into the Central Nervous System, Basel: Birkhäuser Basel, 2003, pp. 39–78. doi: 10.1007/978-3-0348-8049-7_2.
[8] W. M. Pardridge, “CSF, blood-brain barrier, and brain drug delivery,” Expert Opin Drug Deliv, vol. 13, no. 7, pp. 963–975, Jul. 2016, doi: 10.1517/17425247.2016.1171315.
[9] E. Neuwelt et al., “Strategies to advance translational research into brain barriers,” Lancet Neurol, vol. 7, no. 1, pp. 84–96, Jan. 2008, doi: 10.1016/S1474-4422(07)70326-5.
[10] B. Obermeier, R. Daneman, and R. M. Ransohoff, “Development, maintenance and disruption of the blood-brain barrier,” Nat Med, vol. 19, no. 12, pp. 1584–1596, Dec. 2013, doi: 10.1038/nm.3407.
[11] J. D. Huber, R. D. Egleton, and T. P. Davis, “Molecular physiology and pathophysiology of tight junctions in the blood–brain barrier,” Trends Neurosci, vol. 24, no. 12, pp. 719–725, Dec. 2001, doi: 10.1016/S0166-2236(00)02004-X.
[12] P. Borst and A. H. Schinkel, “P-glycoprotein ABCB1: a major player in drug handling by mammals,” Journal of Clinical Investigation, vol. 123, no. 10, pp. 4131–4133, Oct. 2013, doi: 10.1172/JCI70430.
[13] N. Strazielle and J.-F. Ghersi-Egea, “Potential Pathways for CNS Drug Delivery Across the Blood-Cerebrospinal Fluid Barrier,” Curr Pharm Des, vol. 22, no. 35, pp. 5463–5476, Nov. 2016, doi: 10.2174/1381612822666160726112115.
[14] I. Klatzo, “Presidential Address *,” J Neuropathol Exp Neurol, vol. 26, no. 1, pp. 1–14, Jan. 1967, doi: 10.1097/00005072-196701000-00001.
[15] T. H. Milhorat, “Classification of the cerebral edemas with reference to hydrocephalus and pseudotumor cerebri,” Child’s Nervous System, vol. 8, no. 6, pp. 301–306, Sep. 1992, doi: 10.1007/BF00296558.
[16] J. A. Stokum, D. B. Kurland, V. Gerzanich, and J. M. Simard, “Mechanisms of Astrocyte-Mediated Cerebral Edema,” Neurochem Res, vol. 40, no. 2, pp. 317–328, Feb. 2015, doi: 10.1007/s11064-014-1374-3.
[17] Y. Liu et al., “The protective role of Tongxinluo on blood–brain barrier after ischemia–reperfusion brain injury,” J Ethnopharmacol, vol. 148, no. 2, pp. 632–639, Jul. 2013, doi: 10.1016/j.jep.2013.05.018.
[18] J. Huang, Y. Li, Y. Tang, G. Tang, G.-Y. Yang, and Y. Wang, “CXCR4 Antagonist AMD3100 Protects Blood–Brain Barrier Integrity and Reduces Inflammatory Response After Focal Ischemia in Mice,” Stroke, vol. 44, no. 1, pp. 190–197, Jan. 2013, doi: 10.1161/STROKEAHA.112.670299.
[19] C. Iacovetta, E. Rudloff, and R. Kirby, “The role of aquaporin 4 in the brain,” Vet Clin Pathol, p. n/a-n/a, Jan. 2012, doi: 10.1111/j.1939-165X.2011.00390.x.
[20] H. Hirai, Y. Maru, K. Hagiwara, J. Nishida, and F. Takaku, “A Novel Putative Tyrosine Kinase Receptor Encoded by the eph Gene,” Science (1979), vol. 238, no. 4834, pp. 1717–1720, Dec. 1987, doi: 10.1126/science.2825356.
[21] J. Zhao et al., “EphA4 Regulates Hippocampal Neural Precursor Proliferation in the Adult Mouse Brain by d-Serine Modulation of N-Methyl-d-Aspartate Receptor Signaling,” Cerebral Cortex, vol. 29, no. 10, pp. 4381–4397, Sep. 2019, doi: 10.1093/cercor/bhy319.
[22] S. Kuijper, C. J. Turner, and R. H. Adams, “Regulation of Angiogenesis by Eph–Ephrin Interactions,” Trends Cardiovasc Med, vol. 17, no. 5, pp. 145–151, Jul. 2007, doi: 10.1016/j.tcm.2007.03.003.
[23] A. Martínez and E. Soriano, “Functions of ephrin/Eph interactions in the development of the nervous system: Emphasis on the hippocampal system,” Brain Res Rev, vol. 49, no. 2, pp. 211–226, Sep. 2005, doi: 10.1016/j.brainresrev.2005.02.001.
[24] A. Davy and P. Soriano, “Ephrin signaling in vivo: Look both ways,” Developmental Dynamics, vol. 232, no. 1, pp. 1–10, Jan. 2005, doi: 10.1002/dvdy.20200.
[25] M. Aoki, T. Yamashita, and M. Tohyama, “EphA Receptors Direct the Differentiation of Mammalian Neural Precursor Cells through a Mitogen-activated Protein Kinase-dependent Pathway,” Journal of Biological Chemistry, vol. 279, no. 31, pp. 32643–32650, Jul. 2004, doi: 10.1074/jbc.M313247200.
[26] E. M. Lisabeth, G. Falivelli, and E. B. Pasquale, “Eph Receptor Signaling and Ephrins,” Cold Spring Harb Perspect Biol, vol. 5, no. 9, pp. a009159–a009159, Sep. 2013, doi: 10.1101/cshperspect.a009159.
[27] D. Vreeken, H. Zhang, A. J. van Zonneveld, and J. M. van Gils, “Ephs and Ephrins in Adult Endothelial Biology,” Int J Mol Sci, vol. 21, no. 16, p. 5623, Aug. 2020, doi: 10.3390/ijms21165623.
[28] Eph Nomenclature Committee, “Unified Nomenclature for Eph Family Receptors and Their Ligands, the Ephrins,” Cell, vol. 90, no. 3, pp. 403–404, Aug. 1997, doi: 10.1016/S0092-8674(00)80500-0.
[29] H. Liu, K. Devraj, K. Möller, S. Liebner, M. Hecker, and T. Korff, “EphrinB-mediated reverse signalling controls junctional integrity and pro-inflammatory differentiation of endothelial cells,” Thromb Haemost, vol. 112, no. 07, pp. 151–163, Dec. 2014, doi: 10.1160/TH13-12-1034.
[30] E. B. Pasquale, “Eph-Ephrin Bidirectional Signaling in Physiology and Disease,” Cell, vol. 133, no. 1, pp. 38–52, Apr. 2008, doi: 10.1016/j.cell.2008.03.011.
[31] E. B. Pasquale, “Eph receptor signalling casts a wide net on cell behaviour,” Nat Rev Mol Cell Biol, vol. 6, no. 6, pp. 462–475, Jun. 2005, doi: 10.1038/nrm1662.
[32] S. Tanasic et al., “Desipramine targets astrocytes to attenuate synaptic plasticity via modulation of the ephrinA3/EphA4 signalling,” Neuropharmacology, vol. 105, pp. 154–163, Jun. 2016, doi: 10.1016/j.neuropharm.2016.01.021.
[33] H. U. Wang, Z.-F. Chen, and D. J. Anderson, “Molecular Distinction and Angiogenic Interaction between Embryonic Arteries and Veins Revealed by ephrin-B2 and Its Receptor Eph-B4,” Cell, vol. 93, no. 5, pp. 741–753, May 1998, doi: 10.1016/S0092-8674(00)81436-1.
[34] I. Konstantinova et al., “EphA-Ephrin-A-Mediated β Cell Communication Regulates Insulin Secretion from Pancreatic Islets,” Cell, vol. 129, no. 2, pp. 359–370, Apr. 2007, doi: 10.1016/j.cell.2007.02.044.
[35] Z. Miao et al., “VEGF Increases Paracellular Permeability in Brain Endothelial Cells via Upregulation of EphA2,” Anat Rec, vol. 297, no. 5, pp. 964–972, May 2014, doi: 10.1002/ar.22878.
[36] G. Ende et al., “TNF-α-mediated adhesion of monocytes to endothelial cells—The role of ephrinA1,” J Mol Cell Cardiol, vol. 77, pp. 125–135, Dec. 2014, doi: 10.1016/j.yjmcc.2014.10.010.
[37] A. Kania and R. Klein, “Mechanisms of ephrin–Eph signalling in development, physiology and disease,” Nat Rev Mol Cell Biol, vol. 17, no. 4, pp. 240–256, Apr. 2016, doi: 10.1038/nrm.2015.16.
[38] T. M. Woodruff et al., “Epha4-Fc Treatment Reduces Ischemia/Reperfusion-Induced Intestinal Injury by Inhibiting Vascular Permeability,” Shock, vol. 45, no. 2, pp. 184–191, Feb. 2016, doi: 10.1097/SHK.0000000000000494.
[39] T. Gong et al., “EphrinB2/EphB4 Signaling Regulates DPSCs to Induce Sprouting Angiogenesis of Endothelial Cells,” J Dent Res, vol. 98, no. 7, pp. 803–812, Jul. 2019, doi: 10.1177/0022034519843886.
[40] D. M. Poitz et al., “EphrinB2/EphA4-mediated activation of endothelial cells increases monocyte adhesion,” Mol Immunol, vol. 68, no. 2, pp. 648–656, Dec. 2015, doi: 10.1016/j.molimm.2015.10.009.
[41] D. Pfaff et al., “Involvement of endothelial ephrin-B2 in adhesion and transmigration of EphB-receptor-expressing monocytes,” J Cell Sci, vol. 121, no. 22, pp. 3842–3850, Nov. 2008, doi: 10.1242/jcs.030627.
[42] F. Chen et al., “Activation of EphA4 induced by EphrinA1 exacerbates disruption of the blood brain barrier following cerebral ischemia reperfusion via the Rho/ROCK signaling pathway,” Exp Ther Med, Jul. 2018, doi: 10.3892/etm.2018.6460.
[43] R. Lemmens, T. Jaspers, W. Robberecht, and V. N. Thijs, “Modifying expression of EphA4 and its downstream targets improves functional recovery after stroke,” Hum Mol Genet, vol. 22, no. 11, pp. 2214–2220, Jun. 2013, doi: 10.1093/hmg/ddt073.
[44] E. M. Weekman and D. M. Wilcock, “Matrix Metalloproteinase in Blood-Brain Barrier Breakdown in Dementia,” Journal of Alzheimer’s Disease, vol. 49, no. 4, pp. 893–903, Nov. 2015, doi: 10.3233/JAD-150759.
[45] Y. Goldshmit and J. Bourne, “Upregulation of EphA4 on Astrocytes Potentially Mediates Astrocytic Gliosis after Cortical Lesion in the Marmoset Monkey,” J Neurotrauma, vol. 27, no. 7, pp. 1321–1332, Jul. 2010, doi: 10.1089/neu.2010.1294.
[46] L. Wu, X. Yu, and L. Feng, “Connexin 43 stabilizes astrocytes in a stroke-like milieu to facilitate neuronal recovery,” Acta Pharmacol Sin, vol. 36, no. 8, pp. 928–938, Aug. 2015, doi: 10.1038/aps.2015.39.
[47] M. M. Elgebaly, “Ephrin–Eph Signaling as a Novel Neuroprotection Path in Ischemic Stroke,” Journal of Molecular Neuroscience, vol. 70, no. 12, pp. 2001–2006, Dec. 2020, doi: 10.1007/s12031-020-01603-x.
[48] B. Okyere et al., “EphA4/Tie2 crosstalk regulates leptomeningeal collateral remodeling following ischemic stroke,” Journal of Clinical Investigation, vol. 130, no. 2, pp. 1024–1035, Jan. 2020, doi: 10.1172/JCI131493.
[49] Y. Goldshmit et al., “EphA4 Blockers Promote Axonal Regeneration and Functional Recovery Following Spinal Cord Injury in Mice,” PLoS One, vol. 6, no. 9, p. e24636, Sep. 2011, doi: 10.1371/journal.pone.0024636.
[50] J. Zhao, L. T. Cooper, A. W. Boyd, and P. F. Bartlett, “Decreased signalling of EphA4 improves functional performance and motor neuron survival in the SOD1G93A ALS mouse model,” Sci Rep, vol. 8, no. 1, p. 11393, Dec. 2018, doi: 10.1038/s41598-018-29845-1.
[51] R. Lemmens, T. Jaspers, W. Robberecht, and V. N. Thijs, “Modifying expression of EphA4 and its downstream targets improves functional recovery after stroke,” Hum Mol Genet, vol. 22, no. 11, pp. 2214–2220, Jun. 2013, doi: 10.1093/hmg/ddt073.

所在学位评定分委会
生物系
国内图书分类号
Q189
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/420667
专题生命科学学院_生物系
推荐引用方式
GB/T 7714
沙溦濛. EphA4-Fc在小鼠脑中动脉局灶缺血中神经保护作用的研究[D]. 深圳. 南方科技大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930135-沙溦濛-生物系.pdf(2412KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[沙溦濛]的文章
百度学术
百度学术中相似的文章
[沙溦濛]的文章
必应学术
必应学术中相似的文章
[沙溦濛]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。