中文版 | English
题名

Modeling subgrid-scale force and divergence of heat flux of compressible isotropic turbulence by artificial neural network

作者
通讯作者Wang, Jianchun
发表日期
2019-10-16
DOI
发表期刊
ISSN
2469-990X
卷号4期号:10
摘要
In this paper, the subgrid-scale (SGS) force and the divergence of SGS heat flux of compressible isotropic turbulence are modeled directly by an artificial neural network (ANN), which serves as a data-driven SGS modeling tool for large-eddy simulations (LESs). The unclosed SGS force and divergence of SGS heat flux are modeled based on the local stencil geometry with Galilean invariance. The input features include the first-order and second-order derivatives of filtered velocity and temperature, filtered density, and its first-order derivative. It is shown that the proposed ANN-F7 model shows an advantage over the gradient model in the a priori test. Specifically, the ANN-F7 model gives larger correlation coefficients and smaller relative errors than the gradient model. In an a posteriori analysis, the ANN-F7 model performs better than the dynamic Smagorinsky model (DSM) and dynamic mixed model (DMM) in the prediction of the statistical properties of flow fields at the Taylor microscale Reynolds number Re-lambda ranging from 180 to 250. The DSM and DMM models lead to the typical tilted spectral distribution of velocity, where low wave numbers are too energy rich, while those near the cutoff are damped too strongly. In contrast, it is shown that the velocity spectrum predicted by the ANN-F7 model almost overlaps with the filtered direct numerical simulation data. Besides, the ANN-F7 model reconstructs the probability density functions of SGS force and divergence of SGS heat flux much better than the DSM and DMM models. An artificial neural network with reasonable physical input features can deepen our understanding of turbulence modeling.
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一 ; 通讯
资助项目
Young Elite Scientist Sponsorship Program by CAST[2016QNRC001]
WOS研究方向
Physics
WOS类目
Physics, Fluids & Plasmas
WOS记录号
WOS:000490483000004
出版者
EI入藏号
20194507627991
EI主题词
Large eddy simulation ; Neural networks ; Probability density function ; Reynolds equation ; Reynolds number ; Turbulence ; Turbulent flow
EI分类号
Fluid Flow:631 ; Fluid Flow, General:631.1 ; Heat Transfer:641.2 ; Mathematics:921 ; Probability Theory:922.1
来源库
Web of Science
引用统计
被引频次[WOS]:49
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/42113
专题工学院_力学与航空航天工程系
作者单位
1.Southern Univ Sci & Technol, Dept Mech & Aerosp Engn, Ctr Complex Flows & Soft Matter Res, Shenzhen Key Lab Complex Aerosp Flows, Shenzhen 518055, Peoples R China
2.Chinese Acad Sci, Inst Computat Math & Sci Engn Comp, Beijing 100190, Peoples R China
3.Princeton Univ, Program Appl & Computat Math, Princeton, NJ 08544 USA
第一作者单位力学与航空航天工程系
通讯作者单位力学与航空航天工程系
第一作者的第一单位力学与航空航天工程系
推荐引用方式
GB/T 7714
Xie, Chenyue,Li, Ke,Ma, Chao,et al. Modeling subgrid-scale force and divergence of heat flux of compressible isotropic turbulence by artificial neural network[J]. Physical Review Fluids,2019,4(10).
APA
Xie, Chenyue,Li, Ke,Ma, Chao,&Wang, Jianchun.(2019).Modeling subgrid-scale force and divergence of heat flux of compressible isotropic turbulence by artificial neural network.Physical Review Fluids,4(10).
MLA
Xie, Chenyue,et al."Modeling subgrid-scale force and divergence of heat flux of compressible isotropic turbulence by artificial neural network".Physical Review Fluids 4.10(2019).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
Xie-2019-Modeling su(9786KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Xie, Chenyue]的文章
[Li, Ke]的文章
[Ma, Chao]的文章
百度学术
百度学术中相似的文章
[Xie, Chenyue]的文章
[Li, Ke]的文章
[Ma, Chao]的文章
必应学术
必应学术中相似的文章
[Xie, Chenyue]的文章
[Li, Ke]的文章
[Ma, Chao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。