题名 | Modeling subgrid-scale force and divergence of heat flux of compressible isotropic turbulence by artificial neural network |
作者 | |
通讯作者 | Wang, Jianchun |
发表日期 | 2019-10-16
|
DOI | |
发表期刊 | |
ISSN | 2469-990X
|
卷号 | 4期号:10 |
摘要 | In this paper, the subgrid-scale (SGS) force and the divergence of SGS heat flux of compressible isotropic turbulence are modeled directly by an artificial neural network (ANN), which serves as a data-driven SGS modeling tool for large-eddy simulations (LESs). The unclosed SGS force and divergence of SGS heat flux are modeled based on the local stencil geometry with Galilean invariance. The input features include the first-order and second-order derivatives of filtered velocity and temperature, filtered density, and its first-order derivative. It is shown that the proposed ANN-F7 model shows an advantage over the gradient model in the a priori test. Specifically, the ANN-F7 model gives larger correlation coefficients and smaller relative errors than the gradient model. In an a posteriori analysis, the ANN-F7 model performs better than the dynamic Smagorinsky model (DSM) and dynamic mixed model (DMM) in the prediction of the statistical properties of flow fields at the Taylor microscale Reynolds number Re-lambda ranging from 180 to 250. The DSM and DMM models lead to the typical tilted spectral distribution of velocity, where low wave numbers are too energy rich, while those near the cutoff are damped too strongly. In contrast, it is shown that the velocity spectrum predicted by the ANN-F7 model almost overlaps with the filtered direct numerical simulation data. Besides, the ANN-F7 model reconstructs the probability density functions of SGS force and divergence of SGS heat flux much better than the DSM and DMM models. An artificial neural network with reasonable physical input features can deepen our understanding of turbulence modeling. |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
; 通讯
|
资助项目 | Young Elite Scientist Sponsorship Program by CAST[2016QNRC001]
|
WOS研究方向 | Physics
|
WOS类目 | Physics, Fluids & Plasmas
|
WOS记录号 | WOS:000490483000004
|
出版者 | |
EI入藏号 | 20194507627991
|
EI主题词 | Large eddy simulation
; Neural networks
; Probability density function
; Reynolds equation
; Reynolds number
; Turbulence
; Turbulent flow
|
EI分类号 | Fluid Flow:631
; Fluid Flow, General:631.1
; Heat Transfer:641.2
; Mathematics:921
; Probability Theory:922.1
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:49
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/42113 |
专题 | 工学院_力学与航空航天工程系 |
作者单位 | 1.Southern Univ Sci & Technol, Dept Mech & Aerosp Engn, Ctr Complex Flows & Soft Matter Res, Shenzhen Key Lab Complex Aerosp Flows, Shenzhen 518055, Peoples R China 2.Chinese Acad Sci, Inst Computat Math & Sci Engn Comp, Beijing 100190, Peoples R China 3.Princeton Univ, Program Appl & Computat Math, Princeton, NJ 08544 USA |
第一作者单位 | 力学与航空航天工程系 |
通讯作者单位 | 力学与航空航天工程系 |
第一作者的第一单位 | 力学与航空航天工程系 |
推荐引用方式 GB/T 7714 |
Xie, Chenyue,Li, Ke,Ma, Chao,et al. Modeling subgrid-scale force and divergence of heat flux of compressible isotropic turbulence by artificial neural network[J]. Physical Review Fluids,2019,4(10).
|
APA |
Xie, Chenyue,Li, Ke,Ma, Chao,&Wang, Jianchun.(2019).Modeling subgrid-scale force and divergence of heat flux of compressible isotropic turbulence by artificial neural network.Physical Review Fluids,4(10).
|
MLA |
Xie, Chenyue,et al."Modeling subgrid-scale force and divergence of heat flux of compressible isotropic turbulence by artificial neural network".Physical Review Fluids 4.10(2019).
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
Xie-2019-Modeling su(9786KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论