中文版 | English
题名

An improved differential evolution algorithm for learning high-fidelity quantum controls

作者
通讯作者Li, Jun; Peng, Xinhua
发表日期
2019-10-15
DOI
发表期刊
ISSN
2095-9273
EISSN
2095-9281
卷号64期号:19页码:1402-1408
摘要
Precisely and efficiently designing control pulses for the preparation of quantum states and quantum gates are the fundamental tasks for quantum computation. Gradient-based optimal control methods are the routine to design such pulses. However, the gradient information is often difficult to calculate or measure, especially when the system is not well calibrated or in the presence of various uncertainties. Gradient-free evolutionary algorithm is an alternative choice to accomplish this task but usually with low-efficiency. Here, we design an efficient mutation rule by using the information of the current and the former individuals together. This leads to our improved differential evolution algorithm, called daDE. To demonstrate its performance, we numerically benchmark the pulse optimization for quantum states and quantum gates preparations on small-scale NMR system. Further numerical comparisons with conventional differential evolution algorithms show that daDE has great advantages on the convergence speed and robustness to several uncertainties including pulse imperfections and measurement errors. (C) 2019 Science China Press. Published by Elsevier B.V. and Science China Press. All rights reserved.
关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
通讯
资助项目
Anhui Initiative in Quantum Information Technologies[AHY050000]
WOS研究方向
Science & Technology - Other Topics
WOS类目
Multidisciplinary Sciences
WOS记录号
WOS:000487228100008
出版者
EI入藏号
20193207280510
EI主题词
Benchmarking ; Evolutionary algorithms ; Logic gates ; Measurement errors ; Optimization ; Quantum channel ; Random errors ; Uncertainty analysis
EI分类号
Logic Elements:721.2 ; Optimization Techniques:921.5 ; Probability Theory:922.1 ; Quantum Theory; Quantum Mechanics:931.4
来源库
Web of Science
引用统计
被引频次[WOS]:29
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/42122
专题量子科学与工程研究院
理学院_物理系
作者单位
1.Univ Sci & Technol China, CAS Key Lab Microscale Magnet Resonance, Hefei 230026, Anhui, Peoples R China
2.Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China
3.Southern Univ Sci & Technol, Shenzhen Inst Quantum Sci & Engn, Shenzhen 518055, Peoples R China
4.Southern Univ Sci & Technol, Dept Phys, Shenzhen 518055, Peoples R China
5.Ctr Quantum Comp, Peng Cheng Lab, Shenzhen 518055, Peoples R China
6.Southern Univ Sci & Technol, Shenzhen Key Lab Quantum Sci & Engn, Shenzhen 518055, Peoples R China
7.Univ Sci & Technol China, Synerget Innovat Ctr Quantum Informat & Quantum P, Hefei 230026, Anhui, Peoples R China
通讯作者单位量子科学与工程研究院;  物理系;  南方科技大学
推荐引用方式
GB/T 7714
Yang, Xiaodong,Li, Jun,Peng, Xinhua. An improved differential evolution algorithm for learning high-fidelity quantum controls[J]. Science Bulletin,2019,64(19):1402-1408.
APA
Yang, Xiaodong,Li, Jun,&Peng, Xinhua.(2019).An improved differential evolution algorithm for learning high-fidelity quantum controls.Science Bulletin,64(19),1402-1408.
MLA
Yang, Xiaodong,et al."An improved differential evolution algorithm for learning high-fidelity quantum controls".Science Bulletin 64.19(2019):1402-1408.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
Yang-2019-An improve(1884KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Yang, Xiaodong]的文章
[Li, Jun]的文章
[Peng, Xinhua]的文章
百度学术
百度学术中相似的文章
[Yang, Xiaodong]的文章
[Li, Jun]的文章
[Peng, Xinhua]的文章
必应学术
必应学术中相似的文章
[Yang, Xiaodong]的文章
[Li, Jun]的文章
[Peng, Xinhua]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。