题名 | An improved differential evolution algorithm for learning high-fidelity quantum controls |
作者 | |
通讯作者 | Li, Jun; Peng, Xinhua |
发表日期 | 2019-10-15
|
DOI | |
发表期刊 | |
ISSN | 2095-9273
|
EISSN | 2095-9281
|
卷号 | 64期号:19页码:1402-1408 |
摘要 | Precisely and efficiently designing control pulses for the preparation of quantum states and quantum gates are the fundamental tasks for quantum computation. Gradient-based optimal control methods are the routine to design such pulses. However, the gradient information is often difficult to calculate or measure, especially when the system is not well calibrated or in the presence of various uncertainties. Gradient-free evolutionary algorithm is an alternative choice to accomplish this task but usually with low-efficiency. Here, we design an efficient mutation rule by using the information of the current and the former individuals together. This leads to our improved differential evolution algorithm, called daDE. To demonstrate its performance, we numerically benchmark the pulse optimization for quantum states and quantum gates preparations on small-scale NMR system. Further numerical comparisons with conventional differential evolution algorithms show that daDE has great advantages on the convergence speed and robustness to several uncertainties including pulse imperfections and measurement errors. (C) 2019 Science China Press. Published by Elsevier B.V. and Science China Press. All rights reserved. |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 通讯
|
资助项目 | Anhui Initiative in Quantum Information Technologies[AHY050000]
|
WOS研究方向 | Science & Technology - Other Topics
|
WOS类目 | Multidisciplinary Sciences
|
WOS记录号 | WOS:000487228100008
|
出版者 | |
EI入藏号 | 20193207280510
|
EI主题词 | Benchmarking
; Evolutionary algorithms
; Logic gates
; Measurement errors
; Optimization
; Quantum channel
; Random errors
; Uncertainty analysis
|
EI分类号 | Logic Elements:721.2
; Optimization Techniques:921.5
; Probability Theory:922.1
; Quantum Theory; Quantum Mechanics:931.4
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:29
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/42122 |
专题 | 量子科学与工程研究院 理学院_物理系 |
作者单位 | 1.Univ Sci & Technol China, CAS Key Lab Microscale Magnet Resonance, Hefei 230026, Anhui, Peoples R China 2.Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China 3.Southern Univ Sci & Technol, Shenzhen Inst Quantum Sci & Engn, Shenzhen 518055, Peoples R China 4.Southern Univ Sci & Technol, Dept Phys, Shenzhen 518055, Peoples R China 5.Ctr Quantum Comp, Peng Cheng Lab, Shenzhen 518055, Peoples R China 6.Southern Univ Sci & Technol, Shenzhen Key Lab Quantum Sci & Engn, Shenzhen 518055, Peoples R China 7.Univ Sci & Technol China, Synerget Innovat Ctr Quantum Informat & Quantum P, Hefei 230026, Anhui, Peoples R China |
通讯作者单位 | 量子科学与工程研究院; 物理系; 南方科技大学 |
推荐引用方式 GB/T 7714 |
Yang, Xiaodong,Li, Jun,Peng, Xinhua. An improved differential evolution algorithm for learning high-fidelity quantum controls[J]. Science Bulletin,2019,64(19):1402-1408.
|
APA |
Yang, Xiaodong,Li, Jun,&Peng, Xinhua.(2019).An improved differential evolution algorithm for learning high-fidelity quantum controls.Science Bulletin,64(19),1402-1408.
|
MLA |
Yang, Xiaodong,et al."An improved differential evolution algorithm for learning high-fidelity quantum controls".Science Bulletin 64.19(2019):1402-1408.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
Yang-2019-An improve(1884KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论