中文版 | English
题名

Asymptotically compatible discretization of multidimensional nonlocal diffusion models and approximation of nonlocal Green's functions

作者
通讯作者Yang, Jiang
发表日期
2019-04
DOI
发表期刊
ISSN
0272-4979
EISSN
1464-3642
卷号39期号:2页码:607-625
摘要
Nonlocal diffusion equations and their numerical approximations have attracted much attention in the literature as nonlocal modeling becomes popular in various applications. This paper continues the study of robust discretization schemes for the numerical solution of nonlocal models. In particular, we present quadrature-based finite difference approximations of some linear nonlocal diffusion equations in multidimensions. These approximations are able to preserve various nice properties of the nonlocal continuum models such as the maximum principle and they are shown to be asymptotically compatible in the sense that as the nonlocality vanishes, the numerical solutions can give consistent local limits. The approximation errors are proved to be of optimal order in both nonlocal and asymptotically local settings. The numerical schemes involve a unique design of quadrature weights that reflect the multidimensional nature and require technical estimates on nonconventional divided differences for their numerical analysis. We also study numerical approximations of nonlocal Green's functions associated with nonlocal models. Unlike their local counterparts, nonlocal Green's functions might become singular measures that are not well defined pointwise. We demonstrate how to combine a splitting technique with the asymptotically compatible schemes to provide effective numerical approximations of these singular measures.
关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
通讯
资助项目
Army Research Office MURI Grant[W911NF-15-1-0562]
WOS研究方向
Mathematics
WOS类目
Mathematics, Applied
WOS记录号
WOS:000491257300003
出版者
EI入藏号
20214911261483
EI主题词
Continuum mechanics ; Diffusion ; Finite difference method ; Partial differential equations
EI分类号
Mathematics:921 ; Mechanics:931.1
ESI学科分类
MATHEMATICS
来源库
Web of Science
引用统计
被引频次[WOS]:29
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/42192
专题理学院_数学系
工学院_材料科学与工程系
作者单位
1.Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA
2.Southern Univ Sci & Technol, Dept Math, Shenzhen 518055, Peoples R China
通讯作者单位数学系
推荐引用方式
GB/T 7714
Du, Qiang,Tao, Yunzhe,Tian, Xiaochuan,et al. Asymptotically compatible discretization of multidimensional nonlocal diffusion models and approximation of nonlocal Green's functions[J]. IMA JOURNAL OF NUMERICAL ANALYSIS,2019,39(2):607-625.
APA
Du, Qiang,Tao, Yunzhe,Tian, Xiaochuan,&Yang, Jiang.(2019).Asymptotically compatible discretization of multidimensional nonlocal diffusion models and approximation of nonlocal Green's functions.IMA JOURNAL OF NUMERICAL ANALYSIS,39(2),607-625.
MLA
Du, Qiang,et al."Asymptotically compatible discretization of multidimensional nonlocal diffusion models and approximation of nonlocal Green's functions".IMA JOURNAL OF NUMERICAL ANALYSIS 39.2(2019):607-625.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Du, Qiang]的文章
[Tao, Yunzhe]的文章
[Tian, Xiaochuan]的文章
百度学术
百度学术中相似的文章
[Du, Qiang]的文章
[Tao, Yunzhe]的文章
[Tian, Xiaochuan]的文章
必应学术
必应学术中相似的文章
[Du, Qiang]的文章
[Tao, Yunzhe]的文章
[Tian, Xiaochuan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。