中文版 | English
题名

Insufficient Data Can Also Rock! Learning to Converse Using Smaller Data with Augmentation

作者
通讯作者Yan, Rui
发表日期
2019
会议录名称
页码
6698-6705
出版地
2275 E BAYSHORE RD, STE 160, PALO ALTO, CA 94303 USA
出版者
摘要
Recent successes of open-domain dialogue generation mainly rely on the advances of deep neural networks. The effectiveness of deep neural network models depends on the amount of training data. As it is laboursome and expensive to acquire a huge amount of data in most scenarios, how to effectively utilize existing data is the crux of this issue. In this paper, we use data augmentation techniques to improve the performance of neural dialogue models on the condition of insufficient data. Specifically, we propose a novel generative model to augment existing data, where the conditional variational autoencoder (CVAE) is employed as the generator to output more training data with diversified expressions. To improve the correlation of each augmented training pair, we design a discriminator with adversarial training to supervise the augmentation process. Moreover, we thoroughly investigate various data augmentation schemes for neural dialogue system with generative models, both GAN and CVAE. Experimental results on two open corpora, Weibo and Twitter, demonstrate the superiority of our proposed data augmentation model.
学校署名
其他
语种
英语
相关链接[来源记录]
收录类别
资助项目
Guangdong Natural Science Foundation[2018A030310129]
WOS研究方向
Computer Science ; Engineering
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods ; Engineering, Electrical & Electronic
WOS记录号
WOS:000486572501029
EI入藏号
20203509102082
EI主题词
Speech processing ; Neural network models ; Social networking (online)
EI分类号
Ergonomics and Human Factors Engineering:461.4 ; Computer Software, Data Handling and Applications:723 ; Artificial Intelligence:723.4 ; Speech:751.5
来源库
Web of Science
引用统计
被引频次[WOS]:20
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/42227
专题工学院_计算机科学与工程系
作者单位
1.Peking Univ, Acad Adv Interdisciplinary Studies, Ctr Data Sci, Beijing, Peoples R China
2.Peking Univ, Inst Comp Sci & Technol, Beijing, Peoples R China
3.Southern Univ Sci & Technol, Dept Comp Sci & Engn, Shenzhen, Peoples R China
推荐引用方式
GB/T 7714
Li, Juntao,Qiu, Lisong,Tang, Bo,et al. Insufficient Data Can Also Rock! Learning to Converse Using Smaller Data with Augmentation[C]. 2275 E BAYSHORE RD, STE 160, PALO ALTO, CA 94303 USA:ASSOC ADVANCEMENT ARTIFICIAL INTELLIGENCE,2019:6698-6705.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Li, Juntao]的文章
[Qiu, Lisong]的文章
[Tang, Bo]的文章
百度学术
百度学术中相似的文章
[Li, Juntao]的文章
[Qiu, Lisong]的文章
[Tang, Bo]的文章
必应学术
必应学术中相似的文章
[Li, Juntao]的文章
[Qiu, Lisong]的文章
[Tang, Bo]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。