题名 | Proposing a new loan recommendation framework for loan allocation strategies in online P2P lending |
作者 | |
发表日期 | 2023-01
|
DOI | |
发表期刊 | |
ISSN | 0263-5577
|
EISSN | 1758-5783
|
卷号 | 123期号:3页码:910-930 |
摘要 | Purpose: Lenders in online peer-to-peer (P2P) lending platforms are always non-experts and face severe information asymmetry. This paper aims to achieve the goals of gaining high returns with risk limitations or lowering risks with expected returns for P2P lenders. Design/methodology/approach: This paper used data from a leading online P2P lending platform in America. First, the authors constructed a logistic regression-based credit scoring model and a linear regression-based profit scoring model to predict the default probabilities and profitability of loans. Second, based on the predictions of loan risk and loan return, the authors constructed linear programming model to form the optimal loan portfolio for lenders. Findings: The research results show that compared to a logistic regression-based credit scoring method, the proposed new framework could make more returns for lenders with risks unchanged. Furthermore, compared to a linear regression-based profit scoring method, the proposed new framework could lower risks for lenders without lowering returns. In addition, comparisons with advanced machine learning techniques further validate its superiority. Originality/value: Unlike previous studies that focus solely on predicting the default probability or profitability of loans, this study considers loan allocation in online P2P lending as an optimization research problem using a new framework based upon modern portfolio theory (MPT). This study may contribute theoretically to the extension of MPT in the specific context of online P2P lending and benefit lenders and platforms to develop more efficient investment tools. |
关键词 | |
相关链接 | [Scopus记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
|
资助项目 | Intelligent Management & Innovation Research Center (IMIRC) of Shenzhen Research Base in Arts & Social Sciences (RBASS)["71731009","72061127002","2018WZDXM020"]
|
WOS研究方向 | Computer Science
; Engineering
|
WOS类目 | Computer Science, Interdisciplinary Applications
; Engineering, Industrial
|
WOS记录号 | WOS:000919734300001
|
出版者 | |
EI入藏号 | 20230513473821
|
EI主题词 | Finance
; Learning systems
; Linear programming
; Linear regression
; Logistic regression
; Profitability
|
EI分类号 | Industrial Economics:911.2
; Mathematical Statistics:922.2
|
ESI学科分类 | ENGINEERING
|
Scopus记录号 | 2-s2.0-85147103876
|
来源库 | 人工提交
|
引用统计 |
被引频次[WOS]:1
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/423950 |
专题 | 南方科技大学 商学院_金融系 |
作者单位 | 南方科技大学 |
第一作者单位 | 南方科技大学 |
第一作者的第一单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
Yan S. Proposing a new loan recommendation framework for loan allocation strategies in online P2P lending[J]. INDUSTRIAL MANAGEMENT & DATA SYSTEMS,2023,123(3):910-930.
|
APA |
严硕.(2023).Proposing a new loan recommendation framework for loan allocation strategies in online P2P lending.INDUSTRIAL MANAGEMENT & DATA SYSTEMS,123(3),910-930.
|
MLA |
严硕."Proposing a new loan recommendation framework for loan allocation strategies in online P2P lending".INDUSTRIAL MANAGEMENT & DATA SYSTEMS 123.3(2023):910-930.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
10-1108_IMDS-07-2022(419KB) | -- | -- | 限制开放 | -- |
个性服务 |
原文链接 |
推荐该条目 |
保存到收藏夹 |
查看访问统计 |
导出为Endnote文件 |
导出为Excel格式 |
导出为Csv格式 |
Altmetrics Score |
谷歌学术 |
谷歌学术中相似的文章 |
[严硕]的文章 |
百度学术 |
百度学术中相似的文章 |
[严硕]的文章 |
必应学术 |
必应学术中相似的文章 |
[严硕]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论