中文版 | English
题名

Proposing a new loan recommendation framework for loan allocation strategies in online P2P lending

作者
发表日期
2023-01
DOI
发表期刊
ISSN
0263-5577
EISSN
1758-5783
卷号123期号:3页码:910-930
摘要
Purpose: Lenders in online peer-to-peer (P2P) lending platforms are always non-experts and face severe information asymmetry. This paper aims to achieve the goals of gaining high returns with risk limitations or lowering risks with expected returns for P2P lenders. Design/methodology/approach: This paper used data from a leading online P2P lending platform in America. First, the authors constructed a logistic regression-based credit scoring model and a linear regression-based profit scoring model to predict the default probabilities and profitability of loans. Second, based on the predictions of loan risk and loan return, the authors constructed linear programming model to form the optimal loan portfolio for lenders. Findings: The research results show that compared to a logistic regression-based credit scoring method, the proposed new framework could make more returns for lenders with risks unchanged. Furthermore, compared to a linear regression-based profit scoring method, the proposed new framework could lower risks for lenders without lowering returns. In addition, comparisons with advanced machine learning techniques further validate its superiority. Originality/value: Unlike previous studies that focus solely on predicting the default probability or profitability of loans, this study considers loan allocation in online P2P lending as an optimization research problem using a new framework based upon modern portfolio theory (MPT). This study may contribute theoretically to the extension of MPT in the specific context of online P2P lending and benefit lenders and platforms to develop more efficient investment tools.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一
资助项目
Intelligent Management & Innovation Research Center (IMIRC) of Shenzhen Research Base in Arts & Social Sciences (RBASS)["71731009","72061127002","2018WZDXM020"]
WOS研究方向
Computer Science ; Engineering
WOS类目
Computer Science, Interdisciplinary Applications ; Engineering, Industrial
WOS记录号
WOS:000919734300001
出版者
EI入藏号
20230513473821
EI主题词
Finance ; Learning systems ; Linear programming ; Linear regression ; Logistic regression ; Profitability
EI分类号
Industrial Economics:911.2 ; Mathematical Statistics:922.2
ESI学科分类
ENGINEERING
Scopus记录号
2-s2.0-85147103876
来源库
人工提交
引用统计
被引频次[WOS]:1
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/423950
专题南方科技大学
商学院_金融系
作者单位
南方科技大学
第一作者单位南方科技大学
第一作者的第一单位南方科技大学
推荐引用方式
GB/T 7714
Yan S. Proposing a new loan recommendation framework for loan allocation strategies in online P2P lending[J]. INDUSTRIAL MANAGEMENT & DATA SYSTEMS,2023,123(3):910-930.
APA
严硕.(2023).Proposing a new loan recommendation framework for loan allocation strategies in online P2P lending.INDUSTRIAL MANAGEMENT & DATA SYSTEMS,123(3),910-930.
MLA
严硕."Proposing a new loan recommendation framework for loan allocation strategies in online P2P lending".INDUSTRIAL MANAGEMENT & DATA SYSTEMS 123.3(2023):910-930.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
10-1108_IMDS-07-2022(419KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[严硕]的文章
百度学术
百度学术中相似的文章
[严硕]的文章
必应学术
必应学术中相似的文章
[严硕]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。