中文版 | English
题名

RATING: Medical knowledge-guided rheumatoid arthritis assessment from multimodal ultrasound images via deep learning

作者
通讯作者Qiao, Hui; Wang, Qian; Xu, Feng; Dai, Qionghai; Yang, Meng
发表日期
2022-09-09
DOI
发表期刊
ISSN
2666-3899
卷号3期号:9
摘要
Multimodal ultrasound has demonstrated its power in the clinical assessment of rheumatoid arthritis (RA). However, for radiologists, it requires strong experience. In this paper, we propose a rheumatoid arthritis knowledge guided (RATING) system that automatically scores the RA activity and generates interpretable features to assist radiologists' decision-making based on deep learning. RATING leverages the complementary advantages of multimodal ultrasound images and solves the limited training data problem with self-supervised pretraining. RATING outperforms all of the existing methods, achieving an accuracy of 86.1% on a prospective test dataset and 85.0% on an external test dataset. A reader study demonstrates that the RATING system improves the average accuracy of 10 radiologists from 41.4% to 64.0%. As an assistive tool, not only can RATING indicate the possible lesions and enhance the diagnostic performance with multimodal ultrasound but it can also enlighten the road to human-machine collaboration in healthcare.
相关链接[来源记录]
收录类别
语种
英语
学校署名
其他
资助项目
International Science and Technology Cooperation Programme[2015DFA30440] ; National Natural Science Foundation of China["81421004","62071271","62021002","61727808","61971447","81301268"] ; National Key Technology R&D Program of China["2019YFC0840603","2017YFC0907601","2017YFC0907604","2017YFE0104200","2018YFA0704000"] ; Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences["2020-I2M-CT-B-035","2021-I2M-1-005"] ; Non-profit Central Research Institute Fund of the Chinese Academy of Medical Sciences[2021-PT320-002] ; Beijing Municipal Natural Science Foundation["JQ18023","JQ19015","JQ21012"]
WOS研究方向
Computer Science
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Information Systems ; Computer Science, Interdisciplinary Applications
WOS记录号
WOS:000898561500003
出版者
来源库
Web of Science
引用统计
被引频次[WOS]:4
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/424064
专题南方科技大学第一附属医院
作者单位
1.Tsinghua Univ, Sch Software, Beijing 100084, Peoples R China
2.Tsinghua Univ, Inst Brain & Cognit Sci, Beijing 100084, Peoples R China
3.Chinese Acad Med Sci & Peking Union Med Coll, Dept Ultrasound, State Key Lab Complex Severe & Rare Dis, Peking Union Med Coll Hosp, Beijing 100730, Peoples R China
4.Tsinghua Univ, Dept Automat, Beijing 100084, Peoples R China
5.Jinan Univ, Affiliated Hosp 1, Southern Univ Sci & Technol, Shenzhen Peoples Hosp,Dept Ultrasound,Clin Coll 2, Shenzhen 518020, Peoples R China
推荐引用方式
GB/T 7714
Zhou, Zhanping,Zhao, Chenyang,Qiao, Hui,et al. RATING: Medical knowledge-guided rheumatoid arthritis assessment from multimodal ultrasound images via deep learning[J]. Patterns,2022,3(9).
APA
Zhou, Zhanping.,Zhao, Chenyang.,Qiao, Hui.,Wang, Ming.,Guo, Yuchen.,...&Yang, Meng.(2022).RATING: Medical knowledge-guided rheumatoid arthritis assessment from multimodal ultrasound images via deep learning.Patterns,3(9).
MLA
Zhou, Zhanping,et al."RATING: Medical knowledge-guided rheumatoid arthritis assessment from multimodal ultrasound images via deep learning".Patterns 3.9(2022).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhou, Zhanping]的文章
[Zhao, Chenyang]的文章
[Qiao, Hui]的文章
百度学术
百度学术中相似的文章
[Zhou, Zhanping]的文章
[Zhao, Chenyang]的文章
[Qiao, Hui]的文章
必应学术
必应学术中相似的文章
[Zhou, Zhanping]的文章
[Zhao, Chenyang]的文章
[Qiao, Hui]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。