中文版 | English
题名

PUTN: A Plane-fitting based Uneven Terrain Navigation Framework

作者
DOI
发表日期
2022
会议名称
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
ISSN
2153-0858
ISBN
978-1-6654-7928-8
会议录名称
页码
7160-7166
会议日期
23-27 Oct. 2022
会议地点
Kyoto, Japan
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要
Autonomous navigation of ground robots has been widely used in indoor structured 2D environments, but there are still many challenges in outdoor 3D unstructured environments, especially in rough, uneven terrains. This paper proposed a plane-fitting based uneven terrain navigation framework (PUTN) to solve this problem. The implementation of PUTN is divided into three steps. First, based on Rapidly-exploring Random Trees (RRT), an improved sample-based algorithm called Plane Fitting RRT* (PF-RRT*) is proposed to obtain a sparse trajectory. Each sampling point corresponds to a custom traversability index and a fitted plane on the point cloud. These planes are connected in series to form a traversable "strip". Second, Gaussian Process Regression is used to generate traversability of the dense trajectory interpolated from the sparse trajectory, and the sampling tree is used as the training set. Finally, local planning is performed using nonlinear model predictive control (NMPC). By adding the traversability index and uncertainty to the cost function, and adding obstacles generated by the real-time point cloud to the constraint function, a safe motion planning algorithm with smooth speed and strong robustness is available. Experiments in real scenarios are conducted to verify the effectiveness of the method. The source code is released for the reference of the community.
关键词
学校署名
其他
语种
英语
相关链接[IEEE记录]
收录类别
资助项目
Joint Funds of the National Natural Science Foundation of China[U1813216]
WOS研究方向
Automation & Control Systems ; Computer Science ; Engineering ; Robotics
WOS类目
Automation & Control Systems ; Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic ; Robotics
WOS记录号
WOS:000909405300016
来源库
IEEE
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9981038
引用统计
被引频次[WOS]:16
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/424440
专题工学院_电子与电气工程系
作者单位
1.Center for Artificial Intelligence and Robotics, Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
2.School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, China
3.Department of Electronic and Electrical Engineering, Southern University of Science and Technology, Shenzhen, China
推荐引用方式
GB/T 7714
Zhuozhu Jian,Zihong Lu,Xiao Zhou,et al. PUTN: A Plane-fitting based Uneven Terrain Navigation Framework[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2022:7160-7166.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhuozhu Jian]的文章
[Zihong Lu]的文章
[Xiao Zhou]的文章
百度学术
百度学术中相似的文章
[Zhuozhu Jian]的文章
[Zihong Lu]的文章
[Xiao Zhou]的文章
必应学术
必应学术中相似的文章
[Zhuozhu Jian]的文章
[Zihong Lu]的文章
[Xiao Zhou]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。