中文版 | English
题名

Soter: Deep Learning Enhanced In-Network Attack Detection Based on Programmable Switches

作者
DOI
发表日期
2022
会议名称
41st International Symposium on Reliable Distributed Systems (SRDS)
ISSN
1060-9857
EISSN
2575-8462
ISBN
978-1-6654-9754-1
会议录名称
页码
225-236
会议日期
19-22 Sept. 2022
会议地点
Vienna, Austria
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要
Though several deep learning (DL) detectors have been proposed for the network attack detection and achieved high accuracy, they are computationally expensive and struggle to satisfy the real-time detection for high-speed networks. Recently, programmable switches exhibit a remarkable throughput efficiency on production networks, indicating a possible deployment of the timely detector. Therefore, we present Soter, a DL enhanced in-network framework for the accurate real-time detection. Soter consists of two phases. One is filtering packets by a rule-based decision tree running on the Tofino ASIC. The other is executing a well-designed lightweight neural network for the thorough inspection of the suspicious packets on the CPU. Experiments on the commodity switch demonstrate that Soter behaves stably in ten network scenarios of different traffic rates and fulfills perflow detection in 0.03s. Moreover, Soter naturally adapts to the distributed deployment among multiple switches, guaranteeing a higher total throughput for large data centers and cloud networks.
关键词
学校署名
其他
语种
英语
相关链接[IEEE记录]
收录类别
资助项目
National Key Research and Development Project of China[2020AAA0107704] ; National Natural Science Foundation of China["61972189","62073263"] ; Shenzhen Key Lab of Software Defined Networking[ZDSYS20140509172959989]
WOS研究方向
Computer Science ; Engineering
WOS类目
Computer Science, Hardware & Architecture ; Computer Science, Theory & Methods ; Engineering, Electrical & Electronic
WOS记录号
WOS:000920405900019
来源库
IEEE
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9996861
引用统计
被引频次[WOS]:3
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/424448
专题南方科技大学
作者单位
1.Peng Cheng Laboratory, Shenzhen, China
2.Southern University of Science and Technology, Shenzhen, China
3.Jilin University, Changchun, China
4.Northwestern Polytechnical University, Xi'an, China
5.International Graduate School, Tsinghua University, Shenzhen, China
推荐引用方式
GB/T 7714
Guorui Xie,Qing Li,Chupeng Cui,et al. Soter: Deep Learning Enhanced In-Network Attack Detection Based on Programmable Switches[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2022:225-236.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Guorui Xie]的文章
[Qing Li]的文章
[Chupeng Cui]的文章
百度学术
百度学术中相似的文章
[Guorui Xie]的文章
[Qing Li]的文章
[Chupeng Cui]的文章
必应学术
必应学术中相似的文章
[Guorui Xie]的文章
[Qing Li]的文章
[Chupeng Cui]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。