中文版 | English
题名

Learning to Locate: Adaptive Fingerprint-Based Localization with Few-Shot Relation Learning in Dynamic Indoor Environments

作者
发表日期
2023
DOI
发表期刊
ISSN
1558-2248
EISSN
1558-2248
卷号PP期号:99页码:1-1
摘要
WiFi fingerprint-based localization has been intensive studies as a promising technology of ubiquitous location-based services. Two main concerns for its wide spread applications are to tackle with the cumbersome efforts of site survey and to combat vulnerable environment changes. To address these issues comprehensively, we propose a novel approach on adaptive fingerprint-based localization with less site survey, named as LESS, by exploring a new paradigm of radio map construction and adaptation with few-shot relation learning. Firstly, we extend sparsely collected fingerprints with the fingerprint augmentation method which produces new related data and derives their location information based on local proximity property in a low-dimensional manifold space. Then, LESS designs deep relation networks to learn not only the appropriate features but also a transferable deep-distance metric for modeling the fundamental relationships of the neighborhood fingerprints. Finally, once trained, LESS can quickly establish the neighborhood relationships among new fingerprints in the changed surroundings to realize adaptive location estimations, even without the network updating. The extensive experimental results demonstrate that LESS can achieve an attractive trade-off between the system overhead and the location performance with the superiorities over others in dynamic indoor environments.
关键词
相关链接[IEEE记录]
收录类别
语种
英语
学校署名
第一
资助项目
National Natural Science Foundation of China["62101234","62171160","61771159"] ; Young Elite Scientist Sponsorship Program by the China Association for Science and Technology (CAST)[YESS20210055] ; China Post-Doctoral Science Foundation[2020M670910] ; Shenzhen Science and Technology Program["JCYJ20190806143212658","ZDSYS20210623091808025"]
WOS研究方向
Engineering ; Telecommunications
WOS类目
Engineering, Electrical & Electronic ; Telecommunications
WOS记录号
WOS:001050132500020
出版者
ESI学科分类
COMPUTER SCIENCE
来源库
IEEE
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10011166
引用统计
被引频次[WOS]:6
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/424591
专题工学院_电子与电气工程系
作者单位
1.Department of Electronic and Electrical Engineering, Southern University of Science and Technology, Shenzhen, China
2.School of Electronics and Information Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, China
第一作者单位电子与电气工程系
第一作者的第一单位电子与电气工程系
推荐引用方式
GB/T 7714
Lingyan Zhang,Shaohua Wu,Tingting Zhang,et al. Learning to Locate: Adaptive Fingerprint-Based Localization with Few-Shot Relation Learning in Dynamic Indoor Environments[J]. IEEE Transactions on Wireless Communications,2023,PP(99):1-1.
APA
Lingyan Zhang,Shaohua Wu,Tingting Zhang,&Qinyu Zhang.(2023).Learning to Locate: Adaptive Fingerprint-Based Localization with Few-Shot Relation Learning in Dynamic Indoor Environments.IEEE Transactions on Wireless Communications,PP(99),1-1.
MLA
Lingyan Zhang,et al."Learning to Locate: Adaptive Fingerprint-Based Localization with Few-Shot Relation Learning in Dynamic Indoor Environments".IEEE Transactions on Wireless Communications PP.99(2023):1-1.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Lingyan Zhang]的文章
[Shaohua Wu]的文章
[Tingting Zhang]的文章
百度学术
百度学术中相似的文章
[Lingyan Zhang]的文章
[Shaohua Wu]的文章
[Tingting Zhang]的文章
必应学术
必应学术中相似的文章
[Lingyan Zhang]的文章
[Shaohua Wu]的文章
[Tingting Zhang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。