中文版 | English
题名

A multi-strategy-mode waterlogging-prediction framework for urban flood depth

作者
通讯作者Yang, Lili
发表日期
2022-12-22
DOI
发表期刊
ISSN
1561-8633
EISSN
1684-9981
卷号22期号:12
摘要

Flooding is one of the most disruptive natural disasters, causing substantial loss of life and property damage. Coastal cities in Asia face floods almost every year due to monsoon influences. Early notification of flooding events enables governments to implement focused preventive actions. Specifically, short-term forecasts can buy time for evacuation and emergency rescue, giving flood victims timely relief. This paper proposes a novel multi-strategy-mode waterlogging-prediction (MSMWP) framework for forecasting waterlogging depth based on time series prediction and a machine learning regression method. The framework integrates historical rainfall and waterlogging depth to predict near-future waterlogging in time under future meteorological circumstances. An expanded rainfall model is proposed to consider the positive correlation of future rainfall with waterlogging. By selecting a suitable prediction strategy, adjusting the optimal model parameters, and then comparing the different algorithms, the optimal configuration of prediction is selected. In the actual-value testing, the selected model has high computational efficiency, and the accuracy of predicting the waterlogging depth after 30 min can reach 86.1 %, which is superior to many data-driven prediction models for waterlogging depth. The framework is useful for accurately predicting the depth of a target point promptly. The prompt dissemination of early warning information is crucial to preventing casualties and property damage.

相关链接[来源记录]
收录类别
语种
英语
学校署名
通讯
资助项目
Key Technologies Research and Development Program[
WOS研究方向
Geology ; Meteorology & Atmospheric Sciences ; Water Resources
WOS类目
Geosciences, Multidisciplinary ; Meteorology & Atmospheric Sciences ; Water Resources
WOS记录号
WOS:000902174800001
出版者
ESI学科分类
GEOSCIENCES
来源库
Web of Science
引用统计
被引频次[WOS]:13
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/424894
专题理学院_统计与数据科学系
工学院_环境科学与工程学院
工学院_计算机科学与工程系
作者单位
1.Harbin Inst Technol, Sch Environm, Harbin 150001, Peoples R China
2.Southern Univ Sci & Technol, Dept Stat & Data Sci, Shenzhen 518055, Peoples R China
3.Southern Univ Sci & Technol, Dept Comp Sci & Engn, Shenzhen 518055, Peoples R China
4.Southern Univ Sci & Technol, Sch Environm Sci & Engn, Shenzhen 518055, Peoples R China
5.North China Univ Water Resources & Elect Power, Henan Prov Key Lab Hydrosphere & Watershed Water S, Zhengzhou 450046, Peoples R China
第一作者单位统计与数据科学系
通讯作者单位统计与数据科学系
推荐引用方式
GB/T 7714
Zhang, Zongjia,Liang, Jun,Zhou, Yujue,et al. A multi-strategy-mode waterlogging-prediction framework for urban flood depth[J]. NATURAL HAZARDS AND EARTH SYSTEM SCIENCES,2022,22(12).
APA
Zhang, Zongjia.,Liang, Jun.,Zhou, Yujue.,Huang, Zhejun.,Jiang, Jie.,...&Yang, Lili.(2022).A multi-strategy-mode waterlogging-prediction framework for urban flood depth.NATURAL HAZARDS AND EARTH SYSTEM SCIENCES,22(12).
MLA
Zhang, Zongjia,et al."A multi-strategy-mode waterlogging-prediction framework for urban flood depth".NATURAL HAZARDS AND EARTH SYSTEM SCIENCES 22.12(2022).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
A multi-strategy-mod(10110KB)----开放获取--浏览
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhang, Zongjia]的文章
[Liang, Jun]的文章
[Zhou, Yujue]的文章
百度学术
百度学术中相似的文章
[Zhang, Zongjia]的文章
[Liang, Jun]的文章
[Zhou, Yujue]的文章
必应学术
必应学术中相似的文章
[Zhang, Zongjia]的文章
[Liang, Jun]的文章
[Zhou, Yujue]的文章
相关权益政策
暂无数据
收藏/分享
文件名: A multi-strategy-mode waterlogging-prediction framework for urban flood depth.pdf
格式: Adobe PDF
文件名: A multi-strategy-mode waterlogging-prediction framework for urban flood depth.pdf
格式: Adobe PDF
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。