题名 | Multi-objective evolutionary algorithms are generally good: Maximizing monotone submodular functions over sequences |
作者 | |
通讯作者 | Tang, Ke |
发表日期 | 2023-01-17
|
DOI | |
发表期刊 | |
ISSN | 0304-3975
|
EISSN | 1879-2294
|
卷号 | 943页码:241-266 |
摘要 | Evolutionary algorithms (EAs) are general-purpose optimization algorithms, inspired by natural evolution. Recent theoretical studies have shown that EAs can achieve good approximation guarantees for solving the problem classes of submodular optimization, which have a wide range of applications, such as maximum coverage, sparse regression, influence maximization, document summarization and sensor placement, just to name a few. Though they have provided some theoretical explanation for the general-purpose nature of EAs, the considered submodular objective functions are defined only over sets or multisets. To complement this line of research, this paper studies the problem class of maximizing monotone submodular functions over sequences, where the objective function depends on the order of items. We prove that for each kind of previously studied monotone submodular objective functions over sequences, i.e., prefix monotone submodular functions, weakly monotone and strongly submodular functions, and DAG monotone submodular functions, a simple multi-objective EA, i.e., GSEMO, can always reach or improve the best known approximation guarantee after running polynomial time in expectation. Note that these best-known approximation guarantees can be obtained only by different greedy-style algorithms before. Empirical studies on various applications, e.g., accomplishing tasks, maximizing information gain, search-and-tracking and recommender systems, show the excellent performance of the GSEMO.(c) 2022 Elsevier B.V. All rights reserved. |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 通讯
|
资助项目 | National Science Foundation of China["62022039","62276124","61921006"]
; Shenzhen Peacock Plan[KQTD2016112514355531]
|
WOS研究方向 | Computer Science
|
WOS类目 | Computer Science, Theory & Methods
|
WOS记录号 | WOS:000913673300001
|
出版者 | |
EI入藏号 | 20230113330284
|
EI主题词 | Approximation algorithms
; Evolutionary algorithms
; Multiobjective optimization
; Polynomial approximation
; Search engines
|
EI分类号 | Computer Theory, Includes Formal Logic, Automata Theory, Switching Theory, Programming Theory:721.1
; Computer Software, Data Handling and Applications:723
; Mathematics:921
; Optimization Techniques:921.5
; Numerical Methods:921.6
|
ESI学科分类 | COMPUTER SCIENCE
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:3
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/425234 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | 1.Nanjing Univ, State Key Lab Novel Software Technol, Nanjing 210023, Peoples R China 2.Univ Sci & Technol China, Sch Comp Sci & Technol, Hefei 230027, Peoples R China 3.Southern Univ Sci & Technol, Dept Comp Sci & Engn, Shenzhen Key Lab Computat Intelligence, Shenzhen 518055, Peoples R China |
通讯作者单位 | 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Qian, Chao,Liu, Dan-Xuan,Feng, Chao,et al. Multi-objective evolutionary algorithms are generally good: Maximizing monotone submodular functions over sequences[J]. THEORETICAL COMPUTER SCIENCE,2023,943:241-266.
|
APA |
Qian, Chao,Liu, Dan-Xuan,Feng, Chao,&Tang, Ke.(2023).Multi-objective evolutionary algorithms are generally good: Maximizing monotone submodular functions over sequences.THEORETICAL COMPUTER SCIENCE,943,241-266.
|
MLA |
Qian, Chao,et al."Multi-objective evolutionary algorithms are generally good: Maximizing monotone submodular functions over sequences".THEORETICAL COMPUTER SCIENCE 943(2023):241-266.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论