中文版 | English
题名

Multi-objective evolutionary algorithms are generally good: Maximizing monotone submodular functions over sequences

作者
通讯作者Tang, Ke
发表日期
2023-01-17
DOI
发表期刊
ISSN
0304-3975
EISSN
1879-2294
卷号943页码:241-266
摘要
Evolutionary algorithms (EAs) are general-purpose optimization algorithms, inspired by natural evolution. Recent theoretical studies have shown that EAs can achieve good approximation guarantees for solving the problem classes of submodular optimization, which have a wide range of applications, such as maximum coverage, sparse regression, influence maximization, document summarization and sensor placement, just to name a few. Though they have provided some theoretical explanation for the general-purpose nature of EAs, the considered submodular objective functions are defined only over sets or multisets. To complement this line of research, this paper studies the problem class of maximizing monotone submodular functions over sequences, where the objective function depends on the order of items. We prove that for each kind of previously studied monotone submodular objective functions over sequences, i.e., prefix monotone submodular functions, weakly monotone and strongly submodular functions, and DAG monotone submodular functions, a simple multi-objective EA, i.e., GSEMO, can always reach or improve the best known approximation guarantee after running polynomial time in expectation. Note that these best-known approximation guarantees can be obtained only by different greedy-style algorithms before. Empirical studies on various applications, e.g., accomplishing tasks, maximizing information gain, search-and-tracking and recommender systems, show the excellent performance of the GSEMO.(c) 2022 Elsevier B.V. All rights reserved.
关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
通讯
资助项目
National Science Foundation of China["62022039","62276124","61921006"] ; Shenzhen Peacock Plan[KQTD2016112514355531]
WOS研究方向
Computer Science
WOS类目
Computer Science, Theory & Methods
WOS记录号
WOS:000913673300001
出版者
EI入藏号
20230113330284
EI主题词
Approximation algorithms ; Evolutionary algorithms ; Multiobjective optimization ; Polynomial approximation ; Search engines
EI分类号
Computer Theory, Includes Formal Logic, Automata Theory, Switching Theory, Programming Theory:721.1 ; Computer Software, Data Handling and Applications:723 ; Mathematics:921 ; Optimization Techniques:921.5 ; Numerical Methods:921.6
ESI学科分类
COMPUTER SCIENCE
来源库
Web of Science
引用统计
被引频次[WOS]:3
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/425234
专题工学院_计算机科学与工程系
作者单位
1.Nanjing Univ, State Key Lab Novel Software Technol, Nanjing 210023, Peoples R China
2.Univ Sci & Technol China, Sch Comp Sci & Technol, Hefei 230027, Peoples R China
3.Southern Univ Sci & Technol, Dept Comp Sci & Engn, Shenzhen Key Lab Computat Intelligence, Shenzhen 518055, Peoples R China
通讯作者单位计算机科学与工程系
推荐引用方式
GB/T 7714
Qian, Chao,Liu, Dan-Xuan,Feng, Chao,et al. Multi-objective evolutionary algorithms are generally good: Maximizing monotone submodular functions over sequences[J]. THEORETICAL COMPUTER SCIENCE,2023,943:241-266.
APA
Qian, Chao,Liu, Dan-Xuan,Feng, Chao,&Tang, Ke.(2023).Multi-objective evolutionary algorithms are generally good: Maximizing monotone submodular functions over sequences.THEORETICAL COMPUTER SCIENCE,943,241-266.
MLA
Qian, Chao,et al."Multi-objective evolutionary algorithms are generally good: Maximizing monotone submodular functions over sequences".THEORETICAL COMPUTER SCIENCE 943(2023):241-266.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Qian, Chao]的文章
[Liu, Dan-Xuan]的文章
[Feng, Chao]的文章
百度学术
百度学术中相似的文章
[Qian, Chao]的文章
[Liu, Dan-Xuan]的文章
[Feng, Chao]的文章
必应学术
必应学术中相似的文章
[Qian, Chao]的文章
[Liu, Dan-Xuan]的文章
[Feng, Chao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。