中文版 | English
题名

Gradient Learning With the Mode-Induced Loss: Consistency Analysis and Applications

作者
发表日期
2023
DOI
发表期刊
ISSN
2162-2388
EISSN
2162-2388
卷号PP期号:99页码:1-14
摘要
Variable selection methods aim to select the key covariates related to the response variable for learning problems with high-dimensional data. Typical methods of variable selection are formulated in terms of sparse mean regression with a parametric hypothesis class, such as linear functions or additive functions. Despite rapid progress, the existing methods depend heavily on the chosen parametric function class and are incapable of handling variable selection for problems where the data noise is heavy-tailed or skewed. To circumvent these drawbacks, we propose sparse gradient learning with the mode-induced loss (SGLML) for robust model-free (MF) variable selection. The theoretical analysis is established for SGLML on the upper bound of excess risk and the consistency of variable selection, which guarantees its ability for gradient estimation from the lens of gradient risk and informative variable identification under mild conditions. Experimental analysis on the simulated and real data demonstrates the competitive performance of our method over the previous gradient learning (GL) methods.
关键词
相关链接[IEEE记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
资助项目
National Natural Science Foundation of China["12071166","62122035","61972188"] ; Fundamental Research Funds for the Central Universities of China["2662020LXQD002","2662021JC008"] ; Science and Technology Development Fund, Macau SAR[0049/2022/A1] ; University of Macau[MYRG2022-00072-FST]
WOS研究方向
Computer Science ; Engineering
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Hardware & Architecture ; Computer Science, Theory & Methods ; Engineering, Electrical & Electronic
WOS记录号
WOS:000920995400001
出版者
EI入藏号
20230613545802
EI主题词
Learning systems ; Risk assessment ; Risk perception
EI分类号
Information Sources and Analysis:903.1 ; Accidents and Accident Prevention:914.1
来源库
IEEE
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10021308
引用统计
被引频次[WOS]:0
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/425405
专题工学院_计算机科学与工程系
作者单位
1.Engineering Research Center of Intelligent Technology for Agriculture, Ministry of Education, Wuhan, China
2.Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China
3.National Space Science Center, Chinese Academy of Sciences, Beijing, China
4.Department of Computer and Information Science, University of Macau, Macau, China
推荐引用方式
GB/T 7714
Hong Chen,Youcheng Fu,Xue Jiang,et al. Gradient Learning With the Mode-Induced Loss: Consistency Analysis and Applications[J]. IEEE Transactions on Neural Networks and Learning Systems,2023,PP(99):1-14.
APA
Hong Chen.,Youcheng Fu.,Xue Jiang.,Yanhong Chen.,Weifu Li.,...&Feng Zheng.(2023).Gradient Learning With the Mode-Induced Loss: Consistency Analysis and Applications.IEEE Transactions on Neural Networks and Learning Systems,PP(99),1-14.
MLA
Hong Chen,et al."Gradient Learning With the Mode-Induced Loss: Consistency Analysis and Applications".IEEE Transactions on Neural Networks and Learning Systems PP.99(2023):1-14.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Hong Chen]的文章
[Youcheng Fu]的文章
[Xue Jiang]的文章
百度学术
百度学术中相似的文章
[Hong Chen]的文章
[Youcheng Fu]的文章
[Xue Jiang]的文章
必应学术
必应学术中相似的文章
[Hong Chen]的文章
[Youcheng Fu]的文章
[Xue Jiang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。