题名 | Stacked Ensemble of Metamodels for Expensive Global Optimization |
作者 | |
DOI | |
发表日期 | 2022
|
ISBN | 978-1-6654-5657-9
|
会议录名称 | |
页码 | 538-542
|
会议日期 | 26-28 Nov. 2022
|
会议地点 | Chengdu, China
|
摘要 | This paper proposes a novel expensive global optimization method, namely Stacked Ensemble of Metamodels for Expensive Global Optimization (SEMGO ††), which aims to improve the accuracy and robustness of the surrogate. Since the existing metamodel ensemble methods leverage fixed linear weighting strategies, they are likely to result in bias when facing various problems. SEMGO employs a learning-based second-layer model to combine the predictions of the first-layer metamodels adaptively. The proposed SEMGO is compared with three state-of-the-art metamodel ensemble methods on seventeen widely used benchmark problems. The experimental results on seventeen benchmark problems show that SEMGO outperforms three state-of-the-art metamodel ensemble methods. The results show that SEMGO performs the best. In addition, the proposed method is applied to solve a practical chip packaging problem, and the previous optimization result is improved over a large margin. |
关键词 | |
学校署名 | 第一
|
相关链接 | [IEEE记录] |
来源库 | IEEE
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10016330 |
引用统计 |
被引频次[WOS]:0
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/425438 |
专题 | 南方科技大学 |
作者单位 | Southern University of Science and Technology, Shenzhen, China |
第一作者单位 | 南方科技大学 |
第一作者的第一单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
Ziliang Miao,Buwei He,Hubocheng Tang,et al. Stacked Ensemble of Metamodels for Expensive Global Optimization[C],2022:538-542.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论