中文版 | English
题名

Stacked Ensemble of Metamodels for Expensive Global Optimization

作者
DOI
发表日期
2022
ISBN
978-1-6654-5657-9
会议录名称
页码
538-542
会议日期
26-28 Nov. 2022
会议地点
Chengdu, China
摘要
This paper proposes a novel expensive global optimization method, namely Stacked Ensemble of Metamodels for Expensive Global Optimization (SEMGO ††), which aims to improve the accuracy and robustness of the surrogate. Since the existing metamodel ensemble methods leverage fixed linear weighting strategies, they are likely to result in bias when facing various problems. SEMGO employs a learning-based second-layer model to combine the predictions of the first-layer metamodels adaptively. The proposed SEMGO is compared with three state-of-the-art metamodel ensemble methods on seventeen widely used benchmark problems. The experimental results on seventeen benchmark problems show that SEMGO outperforms three state-of-the-art metamodel ensemble methods. The results show that SEMGO performs the best. In addition, the proposed method is applied to solve a practical chip packaging problem, and the previous optimization result is improved over a large margin.
关键词
学校署名
第一
相关链接[IEEE记录]
来源库
IEEE
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10016330
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/425438
专题南方科技大学
作者单位
Southern University of Science and Technology, Shenzhen, China
第一作者单位南方科技大学
第一作者的第一单位南方科技大学
推荐引用方式
GB/T 7714
Ziliang Miao,Buwei He,Hubocheng Tang,et al. Stacked Ensemble of Metamodels for Expensive Global Optimization[C],2022:538-542.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Ziliang Miao]的文章
[Buwei He]的文章
[Hubocheng Tang]的文章
百度学术
百度学术中相似的文章
[Ziliang Miao]的文章
[Buwei He]的文章
[Hubocheng Tang]的文章
必应学术
必应学术中相似的文章
[Ziliang Miao]的文章
[Buwei He]的文章
[Hubocheng Tang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。