题名 | Learning Latent Road Correlations from Trajectories |
作者 | |
DOI | |
发表日期 | 2022
|
ISBN | 978-1-6654-8046-8
|
会议录名称 | |
页码 | 5458-5467
|
会议日期 | 17-20 Dec. 2022
|
会议地点 | Osaka, Japan
|
摘要 | A core component of the Intelligent Transportation System (ITS) is road network, which forms the most basic transport infrastructure, and becomes widely applied in many traffic applications. In most traffic models, the spatial representation of road network is learned only through static graph connection while dynamic driver preference and traffic conditions in the real world are ignored. Therefore, in this paper, a novel trajectory-based road network representation is proposed. By mining vehicle trajectories, our proposed method can learn dynamic route choice through embeddings of each road in a next-hop prediction model. Then road correlations are calculated by the embeddings to build a latent correlation graph that can be applied in various traffic-related applications. Extensive experiment results prove the effectiveness and rationality of our proposed approach. |
关键词 | |
学校署名 | 第一
|
相关链接 | [IEEE记录] |
来源库 | IEEE
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10020759 |
引用统计 |
被引频次[WOS]:0
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/425452 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | 1.Department of Computer Science and Engineering, Southern University of Science and Technology, China 2.Center for Spatial Information Science, The University of Tokyo, Japan 3.Information Technology Center, The University of Tokyo, Japan 4.Transport Bureau of Shenzhen Municipality, China |
第一作者单位 | 计算机科学与工程系 |
第一作者的第一单位 | 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Zheng Dong,Quanjun Chen,Renhe Jiang,et al. Learning Latent Road Correlations from Trajectories[C],2022:5458-5467.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论