中文版 | English
题名

Learning Latent Road Correlations from Trajectories

作者
DOI
发表日期
2022
ISBN
978-1-6654-8046-8
会议录名称
页码
5458-5467
会议日期
17-20 Dec. 2022
会议地点
Osaka, Japan
摘要
A core component of the Intelligent Transportation System (ITS) is road network, which forms the most basic transport infrastructure, and becomes widely applied in many traffic applications. In most traffic models, the spatial representation of road network is learned only through static graph connection while dynamic driver preference and traffic conditions in the real world are ignored. Therefore, in this paper, a novel trajectory-based road network representation is proposed. By mining vehicle trajectories, our proposed method can learn dynamic route choice through embeddings of each road in a next-hop prediction model. Then road correlations are calculated by the embeddings to build a latent correlation graph that can be applied in various traffic-related applications. Extensive experiment results prove the effectiveness and rationality of our proposed approach.
关键词
学校署名
第一
相关链接[IEEE记录]
来源库
IEEE
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10020759
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/425452
专题工学院_计算机科学与工程系
作者单位
1.Department of Computer Science and Engineering, Southern University of Science and Technology, China
2.Center for Spatial Information Science, The University of Tokyo, Japan
3.Information Technology Center, The University of Tokyo, Japan
4.Transport Bureau of Shenzhen Municipality, China
第一作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Zheng Dong,Quanjun Chen,Renhe Jiang,et al. Learning Latent Road Correlations from Trajectories[C],2022:5458-5467.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zheng Dong]的文章
[Quanjun Chen]的文章
[Renhe Jiang]的文章
百度学术
百度学术中相似的文章
[Zheng Dong]的文章
[Quanjun Chen]的文章
[Renhe Jiang]的文章
必应学术
必应学术中相似的文章
[Zheng Dong]的文章
[Quanjun Chen]的文章
[Renhe Jiang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。