中文版 | English
题名

A Geomagnetic Sensor Dataset for Traffic Flow Prediction

作者
DOI
发表日期
2022
ISBN
978-1-6654-8046-8
会议录名称
页码
2419-2422
会议日期
17-20 Dec. 2022
会议地点
Osaka, Japan
摘要
Traffic state prediction is essential in Intelligent Transportation Systems for surveillance, management, and daily commuting. For developing high-accuracy prediction models, real-world traffic state datasets are necessary for training model parameters and evaluating prediction results. However, limited by the existing traffic collection devices, most of the current open datasets for traffic state prediction cannot obtain accurate traffic flow information. In contrast, some datasets directly use detection devices in freeway systems, so they cannot reflect complex urban traffic states. Therefore, a dataset from advanced devices that can record the flow from point to point on an urban road network attracts more attention and drives the progress of research on traffic state prediction models. To deal with the above issues, we introduce a Suburban Traffic Flow dataset using Geomagnetic sensors, or STF-G dataset, constructed for traffic flow prediction. The STF-G dataset consists of 2.5 billion vehicle driving scenarios and 319 corresponding geomagnetic sensors. The data was collected over 20 months and processed with two regional road graphs. We also do the Benchmark experiments in STF-G for analyzing and evaluating the performance of graph neural network models in traffic flow prediction and compare them to the other datasets with the same baseline.
关键词
学校署名
第一
相关链接[IEEE记录]
来源库
IEEE
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10020763
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/425466
专题南方科技大学
作者单位
1.Southern University of Science and Technology
2.Center for Spatial Information Science, The University of Tokyo
3.Transport Bureau of Shenzhen Municipality
第一作者单位南方科技大学
第一作者的第一单位南方科技大学
推荐引用方式
GB/T 7714
Huanchen Wang,Quanjun Chen,Zheng Dong,et al. A Geomagnetic Sensor Dataset for Traffic Flow Prediction[C],2022:2419-2422.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Huanchen Wang]的文章
[Quanjun Chen]的文章
[Zheng Dong]的文章
百度学术
百度学术中相似的文章
[Huanchen Wang]的文章
[Quanjun Chen]的文章
[Zheng Dong]的文章
必应学术
必应学术中相似的文章
[Huanchen Wang]的文章
[Quanjun Chen]的文章
[Zheng Dong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。