题名 | Data Driven Optical Flow Prediction for Improving Direct Method Visual SLAM Systems |
作者 | |
DOI | |
发表日期 | 2022
|
ISBN | 978-1-6654-8110-6
|
会议录名称 | |
页码 | 1017-1022
|
会议日期 | 5-9 Dec. 2022
|
会议地点 | Jinghong, China
|
摘要 | Direct and keyframe based visual SLAM (simulta-neous localization and mapping) such as LDSO is widely used in robotic systems. In the direct method, the direct point projection method is usually used on the selected pixel points to predict motion and perform frame-to-frame tracking. However, such systems require a large number of keyframes to maintain stable motion tracking, resulting in a larger map size in comparison to feature based or indirect SLAM systems. The maintenance of large map data is a bottleneck to long-track robotic systems. To address this problem, we propose to use a machine learning model to predict the optical flow. An indicator activates the learning model when the direct image alignment method has a bad performance. We design a point selection method that uses the pixel flow map predicted by the model. We implement the proposed method on the LDSO system. We evaluate the system performance by the absolute pose error, the number of selected keyframes, and time consumption. Then we verify the proposed method to ORB-SLAM3. The results show that the proposed method can reduce the number of selected keyframes while producing a comparable performance to the state-of-the-art. |
关键词 | |
学校署名 | 第一
|
相关链接 | [IEEE记录] |
来源库 | IEEE
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10011968 |
引用统计 |
被引频次[WOS]:0
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/425471 |
专题 | 南方科技大学 |
作者单位 | 1.Department of Electrical and Computer Engineering, Southern University of Science and Technology, Shenzhen, China 2.Guangdong University of Technology, Guangzhou, China |
第一作者单位 | 南方科技大学 |
第一作者的第一单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
Bingqing Selina Wan,Weinan Chen,Li He,et al. Data Driven Optical Flow Prediction for Improving Direct Method Visual SLAM Systems[C],2022:1017-1022.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论