中文版 | English
题名

An Experimental Study of Keypoint Descriptor Fusion

作者
DOI
发表日期
2022
ISBN
978-1-6654-8110-6
会议录名称
页码
699-704
会议日期
5-9 Dec. 2022
会议地点
Jinghong, China
摘要
Local feature descriptors play a crucial role in computer vision problems, especially robot motion. Existing descriptors are highly accurate, but their performance de-pends on the influence of distracting factors, such as illumi-nation and viewpoint. There is room for further improvement of these descriptors. In this paper, we provide an in-depth analysis of several exciting features of the descriptor fusion model (DFM) we have proposed in our recent work, which uses an autoencoder to combine descriptors and exploit their respective advantages. With this DFM framework, we fur-ther validate that fused descriptors can retain advantageous properties and that our DFM is a generally applicable method with respect to various component descriptors. Specifically, we evaluate multiple combinations of hand-crafted and CNN descriptors concerning their performance on a benchmark dataset with illumination and viewpoint changes to obtain comprehensive experimental results. The results show that the fused descriptors have better matching accuracy than their component descriptors.
关键词
学校署名
其他
相关链接[IEEE记录]
来源库
IEEE
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10011825
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/426912
专题南方科技大学
作者单位
1.Biomimetic Intelligent Robotics Research Laboratory (BIRL), Guangdong University of Technology, Guangzhou, China
2.Shenzhen Key Laboratory of Robotics and Computer Vision, Southern University of Science and Technology, Shenzhen, China
推荐引用方式
GB/T 7714
Yaling Pan,Li He,Yisheng Guan,et al. An Experimental Study of Keypoint Descriptor Fusion[C],2022:699-704.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Yaling Pan]的文章
[Li He]的文章
[Yisheng Guan]的文章
百度学术
百度学术中相似的文章
[Yaling Pan]的文章
[Li He]的文章
[Yisheng Guan]的文章
必应学术
必应学术中相似的文章
[Yaling Pan]的文章
[Li He]的文章
[Yisheng Guan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。