中文版 | English
题名

Cybertwin-Driven Multi-Intelligent Reflecting Surfaces aided Vehicular Edge Computing Leveraged by Deep Reinforcement Learning

作者
DOI
发表日期
2022
会议名称
IEEE 96th Vehicular Technology Conference (VTC-Fall)
ISSN
1090-3038
ISBN
978-1-6654-5469-8
会议录名称
页码
1-7
会议日期
26-29 Sept. 2022
会议地点
London, United Kingdom
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要
Recently, the cybertwin-driven intelligent internet of vehicles has received widespread consideration in modern smart cities which makes it possible to run high dimensional, low-latency tolerating, and computational-intensive tasks on the vehicles. Thanks to the development in mobile edge computing, the so-called vehicular edge computing allows mobile vehicles to offload their tasks to the road-side unit or hybrid access point due to the limited computation capability. In this paper, we consider a cybertwin-driven internet of vehicle system that provides computing services for mobile vehicles in local area network or wide area network aided with multi-intelligent reflecting surfaces. Based on this system model, we investigate an optimization problem to jointly maximize the sum of data rate in wide area network, and the sum of energy utilities of vehicles. However, in the proposed system model, it is complicated to design the optimal phase, scheduling and offloading decision policy. To solve this issue, we propose a block coordinate descent and deep reinforcement learning based intelligent IoV computing policy. Numerical results have verified that the proposed algorithm can achieve better IoV computing performance compared with four relative benchmark algorithms.
关键词
学校署名
其他
语种
英语
相关链接[IEEE记录]
收录类别
资助项目
Natural Science Foundation of Guangdong Province[2021A1515011856] ; National Natural Science Foundation of China["U1801261","61902388","61503368"] ; Shenzhen Science and Technology Program[JCYJ20190807161805817]
WOS研究方向
Engineering ; Telecommunications ; Transportation
WOS类目
Engineering, Electrical & Electronic ; Telecommunications ; Transportation Science & Technology
WOS记录号
WOS:000927580600002
来源库
IEEE
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10012694
引用统计
被引频次[WOS]:1
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/426964
专题南方科技大学
作者单位
1.The Future Network of Intelligence Institute (FNii), The Chinese University of Hong Kong, Shenzhen, China
2.Chinese Academy of Sciences, Shenzhen Institute of Advanced Technology, Shenzhen, China
3.Southern University of Science and Technology, Shenzhen, China
推荐引用方式
GB/T 7714
Xuhui Zhang,Huijun Xing,Weilin Zang,et al. Cybertwin-Driven Multi-Intelligent Reflecting Surfaces aided Vehicular Edge Computing Leveraged by Deep Reinforcement Learning[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2022:1-7.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Xuhui Zhang]的文章
[Huijun Xing]的文章
[Weilin Zang]的文章
百度学术
百度学术中相似的文章
[Xuhui Zhang]的文章
[Huijun Xing]的文章
[Weilin Zang]的文章
必应学术
必应学术中相似的文章
[Xuhui Zhang]的文章
[Huijun Xing]的文章
[Weilin Zang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。