中文版 | English
题名

Using deep learning to predict survival outcome in non-surgical cervical cancer patients based on pathological images

作者
通讯作者Shen, Lin; Jing, Di
发表日期
2023
DOI
发表期刊
ISSN
0171-5216
EISSN
1432-1335
卷号149期号:9
摘要
PurposeWe analyzed clinical features and the representative HE-stained pathologic images to predict 5-year overall survival via the deep-learning approach in cervical cancer patients in order to assist oncologists in designing the optimal treatment strategies.MethodsThe research retrospectively collected 238 non-surgical cervical cancer patients treated with radiochemotherapy from 2014 to 2017. These patients were randomly divided into the training set (n = 165) and test set (n = 73). Then, we extract deep features after segmenting the HE-stained image into patches of size 224 x 224. A Lasso-Cox model was constructed with clinical data to predict 5-year OS. C-index evaluated this model performance with 95% CI, calibration curve, and ROC.ResultsBased on multivariate analysis, 2 of 11 clinical characteristics (C-index 0.68) and 2 of 2048 pathomic features (C-index 0.74) and clinical-pathomic model (C-index 0.83) of nomograms predict 5-year survival in the training set, respectively. In test set, compared with the pathomic and clinical characteristics used alone, the clinical-pathomic model had an AUC of 0.750 (95% CI 0.540-0.959), the clinical predictor model had an AUC of 0.729 (95% CI 0.551-0.909), and the pathomic model AUC was 0.703 (95% CI 0.487-0.919). Based on appropriate nomogram scores, we divided patients into high-risk and low-risk groups, and Kaplan-Meier survival probability curves for both groups showed statistical differences.ConclusionWe built a clinical-pathomic model to predict 5-year OS in non-surgical cervical cancer patients, which may be a promising method to improve the precision of personalized therapy.
关键词
相关链接[来源记录]
收录类别
语种
英语
学校署名
其他
WOS研究方向
Oncology
WOS类目
Oncology
WOS记录号
WOS:000917927700001
出版者
ESI学科分类
CLINICAL MEDICINE
来源库
Web of Science
引用统计
被引频次[WOS]:5
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/430755
专题南方科技大学第一附属医院
作者单位
1.Cent South Univ, Xiangya Hosp, Natl Clin Res Ctr Geriatr Disorders, Dept Oncol, Changsha 410008, Peoples R China
2.Shandong First Med Univ, Shandong Prov Hosp, Dept Radiol, Jing Wu Rd 324, Jinan 250021, Peoples R China
3.Maternal & Child Hlth Hosp Hunan Prov, Dept Obstet & Gynecol, Changsha 410008, Peoples R China
4.Chinese Acad Med Sci & Peking Union Med Coll, Peking Union Med Coll Hosp, Dept Radiat Oncol, Beijing 100730, Peoples R China
5.Southern Univ Sci & Technol, Shenzhen Peoples Hosp, Dept Radiat Oncol, Affiliated Hosp 1, Shenzhen 518020, Guangdong, Peoples R China
推荐引用方式
GB/T 7714
Zhang, Kun,Sun, Kui,Zhang, Caiyi,et al. Using deep learning to predict survival outcome in non-surgical cervical cancer patients based on pathological images[J]. JOURNAL OF CANCER RESEARCH AND CLINICAL ONCOLOGY,2023,149(9).
APA
Zhang, Kun.,Sun, Kui.,Zhang, Caiyi.,Ren, Kang.,Li, Chao.,...&Jing, Di.(2023).Using deep learning to predict survival outcome in non-surgical cervical cancer patients based on pathological images.JOURNAL OF CANCER RESEARCH AND CLINICAL ONCOLOGY,149(9).
MLA
Zhang, Kun,et al."Using deep learning to predict survival outcome in non-surgical cervical cancer patients based on pathological images".JOURNAL OF CANCER RESEARCH AND CLINICAL ONCOLOGY 149.9(2023).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhang, Kun]的文章
[Sun, Kui]的文章
[Zhang, Caiyi]的文章
百度学术
百度学术中相似的文章
[Zhang, Kun]的文章
[Sun, Kui]的文章
[Zhang, Caiyi]的文章
必应学术
必应学术中相似的文章
[Zhang, Kun]的文章
[Sun, Kui]的文章
[Zhang, Caiyi]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。