中文版 | English
题名

Electrical and Thermal Transport of Organic Semiconductors Blended with Insulators

姓名
姓名拼音
ZHANG Zhuoqiong
学号
11852005
学位类型
博士
学位专业
physics
导师
程春
导师单位
材料科学与工程系
论文答辩日期
2023-01-04
论文提交日期
2023-02-09
学位授予单位
香港浸会大学
学位授予地点
香港
摘要

Significant advancements have been made in the application of organic semiconductors (OSCs) in organic field-effect transistors (OFETs); however, their commercial applications have been constrained by the low reproducibility and poor stability of OSCs. Blending OSCs with commodity-insulating polymers is one possible tactic to get around these restrictions. The resultant bicomponent blends have surprising advantages over neat OSCs, including low cost, high performance, and long-time retention. However, a mechanistic comprehension of the role of insulators in these blends is still elusive.

We first looked into how the blending of insulators affected the electrical and thermal transport of three n-type polymers. Despite that commercial polystyrene (PS) is electrically and thermally insulating, the blended films universally provide improved electronic properties and heat transfer as verified by the OFET, time-resolved photoluminescence, and scanning photothermal deflection (SPD) measurements. These outcomes can be rationalized by a two-phase model in which PS blends inhomogeneously with the OSCs. As a result, for the charge transport, the insulator dilutes the trap states in the amorphous region of OSCs, contributing to the improved effective mobility and current density in the blended films. For thermal transport, the PS molecules dispersed among the disordered polymer chains in the amorphous region provide “highways” for phonon propagation.

With the knowledge of the insulator effect on the thermal behaviors of OSCs, coupled with the fact that the thermal conduction of existing OSCs is poor and rarely explored in comparison with traditional inorganic semiconductors. We thus further provide an understanding of the heat transfer mechanism in these insulator blends. Here, PC71BM, a well-known poor heat conductor but widely used electron transporter, serves as a host OSC. PS is a blended guest material. The thermal behaviors of the PC71BM/PS films were systematically investigated by the SPD technique and an infrared thermal camera. Furthermore, we found that the low-molecular-weight PS in the blended film is intimately mixed with the OSC phase, allowing for a better- interconnected phonon transport network and efficient heat conduction. The phase thermodynamics of the blended system discloses the role of insulators in heat transfer, providing new insights into this blending strategy.

Finally, the concept of advancement in the thermal transport of OSCs was extended to fluorinated insulators as guest materials, i.e., poly(4-fluorostyrene) (FPS) and poly(pentafluorostyrene) (5FPS). Starting with 20% 5FPS, the blends can sustain its mobility under high-temperature stress (250 oC for 5 hrs). While the neat device achieved only 10.2% of the mobility of the fresh samples under the same test conditions. Both photothermal deflection spectroscopy (PDS) and temperature-dependent transport reveal that the thermally induced energetic disorder can be effectively inhibited upon blending insulators. As a result, the thermal transport of blended films is more efficient than that of the neat counterpart. We also discovered that a closer mixture of the binary phases improves heat transfer capability. This strategy offers a facile method to operate organic electronics under harsh thermal conditions. Such insights from the disclosed role of insulators provide a guideline for better thermal management in organic electronic applications.

关键词
语种
英语
培养类别
联合培养
入学年份
2018
学位授予年份
2023-11
参考文献列表

[1] H. Sirringhaus, T. Kawase, R. H. Friend, T. Shimoda, M. Inbasekaran, W. Wu, E. P. Woo, Science 2000, 290, 2123.
[2] T. Sekitani, T. Yokota, U. Zschieschang, H. Klauk, S. Bauer, K. Takeuchi, M. Takamiya, T. Sakurai, T. Someya, Science 2009, 326, 1516.
[3] M. Jung, J. Kim, J. Noh, N. Lim, C. Lim, G. Lee, J. Kim, H. Kang, K. Jung, A. D. Leonard, J. M. Tour, G. Cho, IEEE Trans. Electron Devices 2010, 57, 571.
[4] L. J. Edgar, Method and apparatus for controlling electric currents, 1930.
[5] W. Shockley, G. L. Pearson, Phys. Rev. 1948, 74, 232.
[6] D. Kahng, M. M. Atalla, the Solid State Device Research Conf., Pittsburgh, PA.June 1960 1960.
[7] D. Kahng, Electric field controlled semiconductor device, 1963.
[8] A. Tsumura, H. Koezuka, T. Ando, Appl. Phys. Lett. 1986, 49, 1210.
[9] P. Hu, X. He, H. Jiang, InfoMat 2021, 3, 613.
[10] H. Sirringhaus, Adv. Mater. 2014, 26, 1319.
[11] M. Zirkl, A. Haase, A. Fian, H. Schön, C. Sommer, G. Jakopic, G. Leising, B. Stadlober, I. Graz, N. Gaar, R. Schwödiauer, S. Bauer-Gogonea, S. Bauer, Adv. Mater. 2007, 19, 2241.
[12] M. Mizukami, S. Oku, S.-I. Cho, M. Tatetsu, M. Abiko, M. Mamada, T. Sakanoue, Y. Suzuri, J. Kido, S. Tokito, IEEE Electron Device Lett. 2015, 36, 841.
[13] M. Kaltenbrunner, T. Sekitani, J. Reeder, T. Yokota, K. Kuribara, T. Tokuhara, M. Drack, R. Schwödiauer, I. Graz, S. Bauer-Gogonea, S. Bauer, T. Someya, Nature 2013, 499, 458.
[14] X. Wu, Y. Ma, G. Zhang, Y. Chu, J. Du, Y. Zhang, Z. Li, Y. Duan, Z. Fan, J. Huang, Adv. Funct. Mater. 2015, 25, 2138.
[15] C. Wang, X. Zhang, H. Dong, X. Chen, W. Hu, Adv. Energy Mater. 2020, 10, 2000955.
[16] X.-G. Zhao, D. Yang, J.-C. Ren, Y. Sun, Z. Xiao, L. Zhang, Joule 2018, 2, 1662.
[17] BC557 - PNP Transistor (10 Units), 2015. Retrieved August 2022, from https://www.robotpark.com/BC557-PNP-Transistor-10-Units
[18] M. Kim, S. U. Ryu, S. A. Park, K. Choi, T. Kim, D. Chung, T. Park, Adv. Funct. Mater. 2020, 30, 1904545.
[19] Organic field-effect transistor, 2022. Retrieved August 2022, from https://en.wikipedia.org/w/index.php?title=Organic_fieldeffect_transistor&oldid=1086175082
[20] Y. Takeda, K. Hayasaka, R. Shiwaku, K. Yokosawa, T. Shiba, M. Mamada, D. Kumaki, K. Fukuda, S. Tokito, Sci Rep 2016, 6, 25714.
[21] T. A. M. Ferenczi, C. Müller, D. D. C. Bradley, P. Smith, J. Nelson, N. Stingelin, Adv. Mater. 2011, 23, 4093. 
[22] J. Han, F. Bao, D. Huang, X. Wang, C. Yang, R. Yang, X. Jian, J. Wang, X. Bao, J. Chu, Adv. Funct. Mater. 2020, 30, 2003654.
[23] D. Abbaszadeh, A. Kunz, G. A. H. Wetzelaer, J. J. Michels, N. I. Crăciun, K. Koynov, I. Lieberwirth, P. W. M. Blom, Nature Mater. 2016, 15, 628.
[24] T. Wang, J.-Q. Liu, X.-T. Hao, Sol. RRL 2020, 4, 2000539.
[25] Y. Lei, P. Deng, M. Lin, X. Zheng, F. Zhu, B. S. Ong, Adv. Mater. 2016, 28, 6687.
[26] M. J. Ford, M. Wang, S. N. Patel, H. Phan, R. A. Segalman, T.-Q. Nguyen, G. C. Bazan, Chem. Mater. 2016, 28, 1256.
[27] S. Goffri, C. Müller, N. Stingelin-Stutzmann, D. W. Breiby, C. P. Radano, J. W. Andreasen, R. Thompson, R. A. J. Janssen, M. M. Nielsen, P. Smith, H. Sirringhaus, Nat. Mater. 2006, 5, 950.
[28] F. S. Kim, S. A. Jenekhe, Macromolecules 2012, 45, 7514.
[29] B. Tan, H. Pan, H. Li, M. L. Minus, B. M. Budhlall, M. J. Sobkowicz, J. Phys. Chem. C 2018, 122, 2918.
[30] Y. Yuan, G. Giri, A. L. Ayzner, A. P. Zoombelt, S. C. B. Mannsfeld, J. Chen, D. Nordlund, M. F. Toney, J. Huang, Z. Bao, Nat. Commun. 2014, 5, 3005.
[31] E. G. Bittle, J. I. Basham, T. N. Jackson, O. D. Jurchescu, D. J. Gundlach, Nat. Commun. 2016, 7, 10908.
[32] K. Haase, C. Teixeira da Rocha, C. Hauenstein, Y. Zheng, M. Hambsch, S. C. B. Mannsfeld, Adv. Electron. Mater. 2018, 4, 1800076.
[33] C. Teixeira da Rocha, K. Haase, Y. Zheng, M. Löffler, M. Hambsch, S. C. B. Mannsfeld, Adv. Electron. Mater. 2018, 4, 1800141.
[34] F. G. del Pozo, S. Fabiano, R. Pfattner, S. Georgakopoulos, S. Galindo, X. Liu, S. Braun, M. Fahlman, J. Veciana, C. Rovira, X. Crispin, M. Berggren, M. Mas-Torrent, Adv. Funct. Mater. 2016, 26, 2379.
[35] D. M. de Leeuw, M. M. J. Simenon, A. R. Brown, R. E. F. Einerhand, Synth. Met. 1997, 87, 53.
[36] J. Zaumseil, H. Sirringhaus, Chem. Rev. 2007, 107, 1296.
[37] A. Campos, S. Riera-Galindo, J. Puigdollers, M. Mas-Torrent, ACS Appl. Mater. Interfaces 2018, 10, 15952.
[38] Z. Zhang, J. K. W. Ho, C. Zhang, H. Yin, Z. Wen, G. Cai, R. Zhao, R. Shi, X. Lu, J. Liu, X. Hao, C. Cheng, S. K. So, J. Mater. Chem. C 2021, 9, 12281. [39] H. Zhong, J. Smith, S. Rossbauer, A. J. P. White, T. D. Anthopoulos, M. Heeney, Adv. Mater. 2012, 24, 3205.
[40] M. Kang, H. Hwang, W.-T. Park, D. Khim, J.-S. Yeo, Y. Kim, Y.-J. Kim, Y.- Y. Noh, D.-Y. Kim, ACS Appl. Mater. Interfaces 2017, 9, 2686.
[41] P. Wei, X. Wang, X. Li, S. Han, N. Qiao, P. Zhang, Y. Deng, W. Zhang, L. Bu, G. Lu, Adv. Funct. Mater. 2021, 31, 2103369.
[42] S. J. Zilker, C. Detcheverry, E. Cantatore, D. M. de Leeuw, Appl. Phys. Lett. 2001, 79, 1124.
[43] R. Häusermann, B. Batlogg, Appl. Phys. Lett. 2011, 99, 083303.
[44] D. Kwak, H. H. Choi, B. Kang, D. H. Kim, W. H. Lee, K. Cho, Adv. Funct. Mater. 2016, 26, 3003.
[45] F. Ge, Z. Liu, S. B. Lee, X. Wang, G. Zhang, H. Lu, K. Cho, L. Qiu, ACS Appl. Mater. Interfaces 2018, 10, 21510.
[46] A. D. Scaccabarozzi, J. I. Basham, L. Yu, P. Westacott, W. Zhang, A. Amassian, I. McCulloch, M. Caironi, D. J. Gundlach, N. Stingelin, J. Mater. Chem. C 2020, 8, 15406.
[47] C.-C. Lin, S. N. Afraj, A. Velusamy, P.-C. Yu, C.-H. Cho, J. Chen, Y.-H. Li, G.-H. Lee, S.-H. Tung, C.-L. Liu, M.-C. Chen, A. Facchetti, ACS Nano 2021, 15, 727.
[48] J. Kimpel, T. Michinobu, Polym. Int. 2021, 70, 367.
[49] J. Lee, J. Young Jung, D. Hwan Kim, J.-Y. Kim, B.-L. Lee, J.-I. Park, J. Won Chung, J. Seok Park, B. Koo, Y. Wan Jin, S. Lee, Appl. Phys. Lett. 2012, 100, 083302.
[50] W. H. Lee, D. Kwak, J. E. Anthony, H. S. Lee, H. H. Choi, D. H. Kim, S. G. Lee, K. Cho, Adv. Funct. Mater. 2012, 22, 267. [51] A. Kumar, M. A. Baklar, K. Scott, T. Kreouzis, N. Stingelin-Stutzmann, Adv. Mater. 2009, 21, 4447. [52] G. Lu, J. Blakesley, S. Himmelberger, P. Pingel, J. Frisch, I. Lieberwirth, I. Salzmann, M. Oehzelt, R. Di Pietro, A. Salleo, N. Koch, D. Neher, Nat. Commun. 2013, 4, 1588. [53] A. C. Arias, F. Endicott, R. A. Street, Adv. Mater. 2006, 18, 2900. [54] T. Kaimakamis, C. Pitsalidis, A. Papamichail, A. Laskarakis, S. Logothetidis, RSC Adv. 2016, 6, 97077. [55] T. Salzillo, A. Campos, A. Babuji, R. Santiago, S. T. Bromley, C. Ocal, E. Barrena, R. Jouclas, C. Ruzie, G. Schweicher, Y. H. Geerts, M. Mas‐Torrent, Adv. Funct. Mater. 2020, 30, 2006115. [56] J. Chen, S. Das, M. Shao, G. Li, H. Lian, J. Qin, J. F. Browning, J. K. Keum, D. Uhrig, G. Gu, K. Xiao, SmartMat. 2021, 2, 367. [57] A. K. Andreopoulou, M. Gioti, J. K. Kallitsis, In Solution-Processable Components for Organic Electronic Devices (Eds.: Ulanski, J.; Luszczynska, B.; Matyjaszewski, K.), Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2019, pp. 413–482. [58] B. Park, H. Kang, Y. H. Ha, J. Kim, J.-H. Lee, K. Yu, S. Kwon, S.-Y. Jang, S. Kim, S. Jeong, S. Hong, S. Byun, S.-K. Kwon, Y.-H. Kim, K. Lee, Adv. Sci. 2021, 8, 2100332. [59] P. Wei, X. Li, L. Wang, N. Liu, S. He, Y. Ren, Y. Zhu, Y. Yang, G. Lu, L. Bu, Adv. Electron. Mater. 2020, 6, 1901156. [60] K. Yu, B. Park, G. Kim, C.-H. Kim, S. Park, J. Kim, S. Jung, S. Jeong, S. Kwon, H. Kang, J. Kim, M.-H. Yoon, K. Lee, Proc. Natl. Acad. Sci. U.S.A. 2016, 113, 14261. [61] C. Hellmann, F. Paquin, N. D. Treat, A. Bruno, L. X. Reynolds, S. A. Haque, P. N. Stavrinou, C. Silva, N. Stingelin, Adv. Mater. 2013, 25, 4906. [62] Y. Lei, P. Deng, J. Li, M. Lin, F. Zhu, T.-W. Ng, C.-S. Lee, B. S. Ong, Sci. Rep. 2016, 6, 24476. [63] M. Selivanova, C.-H. Chuang, B. Billet, A. Malik, P. Xiang, E. Landry, Y.-C. Chiu, S. Rondeau-Gagné, ACS Appl. Mater. Interfaces 2019, 11, 12723.
[64] A. Gumyusenge, D. T. Tran, X. Luo, G. M. Pitch, Y. Zhao, K. A. Jenkins, T. J. Dunn, A. L. Ayzner, B. M. Savoie, J. Mei, Science 2018, 362, 1131. [65] F. C. Spano, J. Chem. Phys. 2005, 122, 234701. [66] J. I. Scott, X. Xue, M. Wang, R. J. Kline, B. C. Hoffman, D. Dougherty, C. Zhou, G. Bazan, B. T. O’Connor, ACS Appl. Mater. Interfaces 2016, 8, 14037. [67] X. Wang, Y. Zhu, Z. Liu, Y. Yuan, L. Qiu, Adv. Electron. Mater. 2021, 2100591. [68] A. Pérez-Rodríguez, I. Temiño, C. Ocal, M. Mas-Torrent, E. Barrena, ACS Appl. Mater. Interfaces 2018, 10, 7296. [69] D. Choi, H. Kim, N. Persson, P.-H. Chu, M. Chang, J.-H. Kang, S. Graham, E. Reichmanis, Chem. Mater. 2016, 28, 1196. [70] L. Qiu, W. H. Lee, X. Wang, J. S. Kim, J. A. Lim, D. Kwak, S. Lee, K. Cho, Adv. Mater. 2009, 21, 1349. [71] H. Yang, G. Zhang, J. Zhu, W. He, S. Lan, L. Liao, H. Chen, T. Guo, J. Phys. Chem. C 2016, 120, 17282. [72] J. H. Lee, Y. H. Lee, Y. H. Ha, J. Kwon, S. Pyo, Y.-H. Kim, W. H. Lee, RSC Adv. 2017, 7, 7526. [73] S. Nikzad, H.-C. Wu, J. Kim, C. M. Mahoney, J. R. Matthews, W. Niu, Y. Li, H. Wang, W.-C. Chen, M. F. Toney, M. He, Z. Bao, Chem. Mater. 2020, 32, 897. [74] I. Angunawela, M. M. Nahid, M. Ghasemi, A. Amassian, H. Ade, A. Gadisa, ACS Appl. Mater. Interfaces 2020, 12, 26239. [75] A. Hamaguchi, T. Negishi, Y. Kimura, Y. Ikeda, K. Takimiya, S. Z. Bisri, Y. Iwasa, T. Shiro, Adv. Mater. 2015, 27, 6606. [76] M. R. Niazi, R. Li, E. Qiang Li, A. R. Kirmani, M. Abdelsamie, Q. Wang, W. Pan, M. M. Payne, J. E. Anthony, D.-M. Smilgies, S. T. Thoroddsen, E. P. Giannelis, A. Amassian, Nat. Commun. 2015, 6, 8598. [77] A. Campos, Q. Zhang, M. R. Ajayakumar, F. Leonardi, M. Mas-Torrent, Adv. Electron. Mater. 2018, 4, 1700349. [78] K. Zhang, T. Marszalek, P. Wucher, Z. Wang, L. Veith, H. Lu, H.-J. Räder, P. M. Beaujuge, P. W. M. Blom, W. Pisula, Adv. Funct. Mater. 2018, 28, 1805594. [79] A. Tamayo, S. Hofer, T. Salzillo, C. Ruzié, G. Schweicher, R. Resel, M. MasTorrent, J. Mater. Chem. C 2021, 9, 7186.

 

来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/430785
专题工学院_材料科学与工程系
推荐引用方式
GB/T 7714
Zhang ZQ. Electrical and Thermal Transport of Organic Semiconductors Blended with Insulators[D]. 香港. 香港浸会大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11852005-张卓琼-材料科学与工程(7824KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[张卓琼]的文章
百度学术
百度学术中相似的文章
[张卓琼]的文章
必应学术
必应学术中相似的文章
[张卓琼]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。