中文版 | English
题名

Linear attention coupled Fourier neural operator for simulation of three-dimensional turbulence

作者
通讯作者Wang, Jianchun
发表日期
2023
DOI
发表期刊
ISSN
1070-6631
EISSN
1089-7666
卷号35期号:1
摘要
Modeling three-dimensional (3D) turbulence by neural networks is difficult because 3D turbulence is highly nonlinear with high degrees of freedom and the corresponding simulation is memory-intensive. Recently, the attention mechanism has been shown as a promising approach to boost the performance of neural networks on turbulence simulation. However, the standard self-attention mechanism uses O ( n (2) ) time and space with respect to input dimension n, and such quadratic complexity has become the main bottleneck for attention to be applied on 3D turbulence simulation. In this work, we resolve this issue with the concept of a linear attention network. The linear attention approximates the standard attention by adding two linear projections, reducing the overall self-attention complexity from O ( n( 2) ) to O(n) in both time and space. The linear attention coupled Fourier neural operator (LAFNO) is developed for the simulation of 3D isotropic turbulence and free shear turbulence. Numerical simulations show that the linear attention mechanism provides 40% error reduction at the same level of computational cost, and LAFNO can accurately reconstruct a variety of statistics and instantaneous spatial structures of 3D turbulence. The linear attention method would be helpful for the improvement of neural network models of 3D nonlinear problems involving high-dimensional data in other scientific domains.
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一 ; 通讯
资助项目
National Natural Science Foundation of China (NSFC)["91952104","92052301","12172161","91752201"] ; National Numerical Wind Tunnel Project[NNW2019ZT1-A04] ; Shenzhen Science and Technology Program[KQTD20180411143441009] ; Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)[GML2019ZD0103] ; Department of Science and Technology of Guangdong Province[2020B1212030001]
WOS研究方向
Mechanics ; Physics
WOS类目
Mechanics ; Physics, Fluids & Plasmas
WOS记录号
WOS:000912374800001
出版者
EI入藏号
20230213379111
EI主题词
3D modeling ; Clustering algorithms ; Complex networks ; Error statistics ; Neural network models ; Three dimensional computer graphics ; Turbulence models
EI分类号
Computer Systems and Equipment:722 ; Data Processing and Image Processing:723.2 ; Artificial Intelligence:723.4 ; Computer Applications:723.5 ; Information Sources and Analysis:903.1 ; Mathematical Statistics:922.2 ; Mechanics:931.1
ESI学科分类
PHYSICS
来源库
Web of Science
引用统计
被引频次[WOS]:18
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/430988
专题工学院_力学与航空航天工程系
作者单位
1.Southern Univ Sci & Technol, Dept Mech & Aerosp Engn, Shenzhen 518055, Peoples R China
2.Southern Univ Sci & Technol, Guangdong Hong Kong Macao Joint Lab Data Driven Fl, Hong Kong 518055, Guangdong, Peoples R China
3.Polytech Montreal, Dept Comp Engn, Quebec City, PQ H3T 1J4, Canada
第一作者单位力学与航空航天工程系;  南方科技大学
通讯作者单位力学与航空航天工程系;  南方科技大学
第一作者的第一单位力学与航空航天工程系
推荐引用方式
GB/T 7714
Peng, Wenhui,Yuan, Zelong,Li, Zhijie,et al. Linear attention coupled Fourier neural operator for simulation of three-dimensional turbulence[J]. PHYSICS OF FLUIDS,2023,35(1).
APA
Peng, Wenhui,Yuan, Zelong,Li, Zhijie,&Wang, Jianchun.(2023).Linear attention coupled Fourier neural operator for simulation of three-dimensional turbulence.PHYSICS OF FLUIDS,35(1).
MLA
Peng, Wenhui,et al."Linear attention coupled Fourier neural operator for simulation of three-dimensional turbulence".PHYSICS OF FLUIDS 35.1(2023).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Peng, Wenhui]的文章
[Yuan, Zelong]的文章
[Li, Zhijie]的文章
百度学术
百度学术中相似的文章
[Peng, Wenhui]的文章
[Yuan, Zelong]的文章
[Li, Zhijie]的文章
必应学术
必应学术中相似的文章
[Peng, Wenhui]的文章
[Yuan, Zelong]的文章
[Li, Zhijie]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。